a2 United States Patent

US009436700B2

10) Patent No.: US 9,436,700 B2

Swanson et al. 45) Date of Patent: Sep. 6, 2016
(54) METHODS AND PROGRAM PRODUCTS (52) US. CL
FOR COMMUNICATING FILE CPC ... GO6F 17/30194 (2013.01); GO6Q 10/10
MODIFICATIONS DURING A (2013.01); GO6Q 10/101 (2013.01); HO4L
COLLABORATION EVENT 12/1827 (2013.01); HO4L 12/1881 (2013.01);
. H04M 3/567 (2013.01); HO4N 1/00204
(71) Apphcant: I0OCOM UK LIMITED, London (GB) (2013.01); HO4N 1/00244 (2013.01); HO4IN
(72) Inventors: Jon N Swanson, Queensbury, NY (US); . . . 715 (2013.01)
Adam M Chapweske, Minneapolis, (58) Field of Classification Search
MN (US) USPC 709/203-205, 213, 217-218, 225-229,
709/250
(73) Assignee: IOCOM UK LIMITED, London (GB) See application file for complete search history.
(*) Notice: Subject to any disclaimer, the term of this (56) References Cited
patent is extended or adjusted under 35
U.S.C. 154(b) by 431 days. U.S. PATENT DOCUMENTS
@) Al No: 13959301 3o A o Tactin
(22) Filed: Allg. 5,2013 (Continued)
(65) Prior Publication Data OTHER PUBLICATIONS
US 2013/0318035 Al Nov. 28, 2013 M. Humphrey et al. “State and Events for Web Services: A Com-
parison of Five WS-Resource Framework and WS-Notification
Related U.S. Application Data Implementations,” 14" IEEE International Symposium on High
(63) Continuation of application No. 12/150,705, filed on ~ Performance Distributed Computing (HPDC-14). Rescarch Tri-
Apr. 30, 2008, now Pat. No. 8,516,050, which is a angle Park, NC, (Jul. 24-27, 2005).
continuation-in-part of application No. 11/903,915, (Continued)
filed on Sep. 25, 2007, now Pat. No. 8,144,632, which
is a continuation-in-part of application No. Primary Examiner — Zami Maung
11/477,169, filed on Jun. 28, 2006, now Pat. No. (74) Attorney, Agent, or Firm — Greer, Burns & Crain,
8,023,437, and a continuation-in-part of application Ltd.; Steven P. Fallon
No. 11/477,069, filed on Jun. 28, 2006, now (57) ABSTRACT
abandoned.
One example method for communicating a file modification
(60) Provisional application No. 60/847.061, filed on Sep. during a collaboration event includes steps of a first com-
25, 2006. puter communicating a file modification status request to a
(51) Int. CL second computer, the status request including at least a file
GO6F 15/16 (2006.01) iden.tiﬁer. and a file property. The.secopd computer uses the
GO6F 17/30 (2006.01) file identifier frgm the request to identify a current property
G06Q 10/10 (2012.01) of a corresponding file. The second computer compares the
HO4L 12/18 (2006.01) current file property to the file property from the status
HO4M 3/56 (2006.01) request and communicates a response to the first computer
HOIN 7/15 (2006.01) when the current property does not match the property from
HO4N 1/00 (2006.01) the status request.
GO6F 12/00 (2006.01) 20 Claims, 15 Drawing Sheets

USER
PRESENCE
GuUI

DRAWING S
BOARD GUIM - [N

HARDWARE|
6l
CHATGUI o3

SHARED | *
DOCUMENT P

USER DRAWING
PRESENCE| , BOARD
SHARED | | SHARED
/| e

|/ [HARDWARE
/"« SHARED
FILE

! [SHARED |
el DOCUMENT
4N FILE

(OTHER) SHARED FILE

GUI P
(OTHER GUI)

CONFIRMATION

US 9,436,700 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

6,006,239 A 12/1999 Bhansali et al.

6,128,644 A 10/2000 Nozaki

6,195,680 Bl 2/2001 Goldszmidt et al.

6,317,777 B1 11/2001 Skarbo et al.

6,587,827 Bl 7/2003 Hennig et al.

6,636,889 Bl 10/2003 Estrada et al.

6,725,284 B2 4/2004 Arndt

6,728,221 Bl 4/2004 Shaffer et al.

6,728,784 Bl 4/2004 Mattaway

6,760,309 Bl 7/2004 Rochberger et al.

6,870,916 B2 3/2005 Henrikson et al.

6,965,614 B1 11/2005 Osterhout et al.

7,277,901 B2 10/2007 Parker et al.

7,317,695 B2 1/2008 Mayer et al.

7,561,522 Bl 7/2009 Cotter

8,516,050 B1* 8/2013 Chapweske HO4N 1/00204
709/204

2002/0128065 Al
2003/0108002 Al
2003/0126291 Al
2003/0204693 Al
2004/0111472 Al
2004/0117446 Al
2004/0201668 Al
2004/0210637 Al
2004/0230895 Al
2004/0230896 Al
2005/0004978 Al
2005/0022204 Al
2005/0044503 Al
2005/0076098 Al
2006/0039335 Al
2006/0053380 Al
2006/0101064 Al
2006/0104221 Al
2006/0268695 Al
2007/0005711 Al
2007/0050448 Al
2007/0168524 Al
2007/0201365 Al

9/2002 Chung et al.
6/2003 Chaney et al.
7/2003 Wang et al.
10/2003 Moran et al.
6/2004 Swanson et al. 709/204
6/2004 SWansonco...... 709/205
10/2004 Matsubara et al.
10/2004 Loveland
11/2004 Elza et al.
11/2004 Elza et al.
1/2005 Reed et al.
1/2005 Kabir et al.
2/2005 Richardson et al.
4/2005 Matsubara et al.
2/2006 Ono et al.
3/2006 Spataro et al.
5/2006 Strong et al.
5/2006 Norton
11/2006 Dhesikan et al.
1/2007 Hassounah et al.
3/2007 Gonen et al.
7/2007 Chao et al.
8/2007 Skoog et al.
2007/0217589 Al 9/2007 Martin et al.
2009/0117927 Al 5/2009 Li et al.

OTHER PUBLICATIONS
“The Role of the Globus Toolkit® in the Grid Ecosystem,” The
Globus Alliance, published on the World Wide Web at http://www.
globus.org/grid__software/role-of-gt.php, (believed published circa
2005).
“An Ecosystem of Grid Components,” The Globus Alliance, pub-
lished on the World Wide Web at http://www.globus.org/grid, ;
software/ecology.php, (believed published circa 2005).
“About the Globus Toolkit,” The Globus Alliance, published on the
World Wide Web at www.globus.org/toolkit/about.html; (believed
published circa 2005).
Ian Foster et al. “A Distributed Resource Management Architecture
that Supports Advance Reservations and Co-Allocation,” published
on the World Wide Web at http://www.globus.org/alliance/publica-
tions/papers/iwqos.pdf#search=
%22a%20distributed %20resource%20management%20archi-
tecture%22 (1999).
“Common Object Request Broker Architecture (CORBA) Manual
v3.0; Chapters 1, 2” published on the World Wide Web at http://
www.omg.org/docs/forma//02-06-05.pdf (Jul. 2002).
“CORBA® BASICS”, Object Management Group, Inc., Published
on the world wide web at: http://www.omg.org/gettingstarted/
corbafaq.htm (believed published circa 1996-2006.
Warren Smith, Ian Foster, Valerie Taylor, “Scheduling with
Advanced Reservations,” International Parallel and Distributed
Processing Symposium (IPDPS ’00), (2000).
Karl Czajkowski, Ian Foster, Carl Kesselman, “Resource Co-Allo-
cation in Computational Grids” (HPDC) (1999).
Warren Smith, Valerie Taylor, Ian Foster, “Using Run-Time Pre-
dictions to Estimate Queue Wait Times and Improve Scheduler

Performance,” Published on the world wide web at: http://www.
globus.org/alliance/publications/papers/p.
pdffsearch=2%22using%20run-
time%20predictions%20to%?20estimate%20queue®%22 (1999).
W3C, “Soap Version 1.2 Part 0: Primer,” W3C Recommendation,
published on the world wide web at: http://www.w3.org/TR/soap12-
part0/ (Jun. 2003).

Tarak Modi, “Clean up your wire protocol with SOAP, Part 1: An
introduction to SOAP basics,” published on the world wide web at:
http://’www.javaworld.com/javaworld/jw-03-2001/jw-0330-soap.
html (Mar. 2001).

Joseph M. Jacob, “CORBA/e: Not Your Father’s Distributed Archi-
tecture,” published on the web at: http://www.elecdesign.com/Ar-
ticles/Index.cfm? AD=1& ArticleID=12702 (Jun. 2006).

Don Box, “A Young Person’s Guide to the Simple Object Access
Protocol: SOAP Increases Interoperability Across Platforms and
Languages,” published on the web at: http://msdn.microsoft.com/
msdnmag/issues/0300/soap/soap.asp; (believed published circa
2000).

Li Qi, Hai Jin et al., “HAND: Highly Available Dynamic Deploy-
ment Infrastructure for Globus Toolkit 4,” published on the world
wide web at: http://www.globus.org/alliance/publications/papers/
HAND-Submitted.pdf—

search=2%22hand%3 A%20highly%?20available%2 (believed pub-
lished circa Jun. 2006).

Ann Chervenak, Ian Foster et al. “The Data Grid: Towards an
Architecture for the Distributed Management and Analysis of Large
Scientific Datasets,” published on the web at: http://loci.cs.utk.edu/
dsi/netstore99/docs/papers/chervenak . pdf—
search=2%22the%?20data%20grid%3 A%20towards (1999).

Ian Foster, Carl Kesselman, Steven Tuecke, “The Anatomy of the
Grid,” published on the world wide web at: http://www.globus.org/
alliance/publications/papers/anatomy.pdf; (2001).

Tan Foster, “Globus Toolkit Version 4: Software for Service-Ori-
ented Systems,” IFIP International Federation for Information Pro-
cessing (2005).

Tan Foster, Carl Kesselman et al., “Grid Services for Distributed
System Integration,” IEEE, 2002.

Paul Z. Kolano, “Surfer: An Extensible Pull-Based Framework for
Resource Selection and Ranking” In Proc. of the 4" IEEE/ACM Intl.
Symp. on Cluster Computing and the Grid, (2004).

“AJAX Examples and Tutorials, What can we do with AJAX?”,
published on the web at: http://www.ajaxexample.com/page.cfim/id/
27241, publication believed circa 2007, author unknown.

“AJAX Examples and Tutorials, What is AJAX?”, published on the
web at: http://www.ajaxexample.com/page.cfm/id/27240, publica-
tion believed circa 2007, author unknown.

“AJAX”, published at on the web at: http://en.wikipedia.org/wiki/
AJAX, believed published circa 2007, authors unknown.

“Why AJAX COMET?”, published on the web at: http://www.
webtide.com/downloads/whitePaperWhyAjax.html; by Greg
Wilkens; Jul. 2006.

“COMET (programming)”, at on the web at: http://en.wikipedia.
org/wiki/COMET, believed published circa 2007, authors unknown.
Rosenberg et al., “SIP: Session Initiation Protocol,” Network Work-
ing Group Request for Comments: 3261, Jun. 2002, pp. 1-269.
Schulzrinne et al., “DHCP Options for SIP servers,” Network
Working Group Request for Comments: 3319 Jul. 2003, pp. 1-7.
Fielding et al., “Hyper Text Transfer Protocol,” Network Working
Group Request for Comments: 2616, Jun. 1999, pp. 1, 53.

Postel, “Internet Control Message Protocol,” Network Working
Group Request for Comments: 792, Sep. 1981, pp. 1-21.
Mockapetris, “Domain Names—Concepts and Facilities,” Network
Working Group Request for Comments: 1034, Nov. 1987, pp. 1-55.
USPTO Office Action dated Jan. 22, 2010, which issued in co-
pending U.S. Appl. No. 12/150,629.

USPTO Office Action dated Aug. 4, 2010, which issued in co-
pending U.S. Appl. No. 12/150,619.

USPTO Office Action dated Sep. 1, 2010, which issued in co-
pending U.S. Appl. No. 12/150,629.

* cited by examiner

U.S. Patent Sep. 6, 2016 Sheet 1 of 15 US 9,436,700 B2
USER A 10 V\ USER B
16 a
12
14 14
12 <
<
USERF N USER C
X
14 |
& 12 14
14
12
USER E 16 14 USER D
FIG. 1
’
/\/9‘ -
| <Ay

FIG. 2

U.S. Patent Sep. 6, 2016 Sheet 2 of 15 US 9,436,700 B2

20

FIG. 3

130

SIXV A

A
v

X AXIS

FIG. 6

U.S. Patent Sep. 6, 2016 Sheet 3 of 15

102
CLIENT COMMUNICATES FILE MODIFICATION STATUS |)
REQUEST TO SERVER SPECIFYING A FILE IDENTIFIER

AND A FILE PROPERTY
Y
SERVER RECEIVES REQUEST, USES FILE IDENTIFIER
TO IDENTIFY FILE AND RETRIEVES FILE CURRENT 104
PROPERTY f
105
B e N N

CONTINUE

b 4
)/\
SERVER

~COMPARES CURRENT
'PROPERTY TO PROPERTY
114

FROM REQUEST —
MATCV

COMMUNICATE
CONFIRMATION TO
CLIENT THAT FILE
VERSION HAS CHANGED

NO

TIMEOUT
VALUE?

YES

KEEP ALIVE
REQUEST
RECEIVED?

US 9,436,700 B2

YES |

U.S. Patent Sep. 6, 2016 Sheet 4 of 15 US 9,436,700 B2

114

116 COMPARE MOST RECENT FILE VERSION
~+—J] TO VERSION IDENTIFIED IN FMSR AND

' IDENTIFY MODIFICATIONS MADE TO FILE
SINCE VERSION IDENTIFIED IN FMSR

118
y
\/\\ ORGANIZE MODIFICATIONS INTO
ADDITIONS AND REMOVALS
120 ’

\/\ COMMUNICATE MODIFICATIONS MADE TO
FILE TO THE CLIENT ORGANIZED AS
ADDITIONS AND REMOVALS

FIG. 5

U.S. Patent

Sep. 6, 2016

Sheet 5 of 15

CLIENT MODIFIES LOCALLY STORED FILE

A

:

CLIENT COMMUNICATES FMSR TO SERVER SPECIFYING A FILE

152
IDENTIFIER, A VERSION IDENTIFIER, AND DESIRED .
MODIFICATIONS (ONLY) TO FILE
i 154

SERVER RECEIVES REQUEST, USES FILE IDENTIFIER TO IDENTIFY
FILE AND RETRIEVES CURRENT FILE VERSION NUMBER

156

NO

GO TO 105
(FIG. 4)

4

162

>

DOES
FMSR INCLUDE
MODIFICATIONS FOR
FILE?

REPLACE FMSR
VERSION NUMBER
WITH NEW VERSION
NUMBER

166

L

RETRIEVE MOST RECENT VERSION

YES OF FILE (“VERSION D)

MAKE MODIFICATIONS SPECIFIED
BY FMSR TO FILE

158 — |

ASSIGN NEW VERSION NUMBER TO

THIS MODIFIED FILE (“VERSION E”)

RETAIN PREVIOUS FILE VERSION
(D) FOR FUTURE COMPARISON

COMPAR

IDENTIFIED IN

ILE VERSION NUMBER
(D) TO VERSION NUMBER

(C)- MATCH?

160

164 COMPARE FILE
"™ VERSIOND TO FILE
VERSION IDENTIFIED IN
FMSR (C) TO IDENTIFY
MODIFICATIONS TO FILE
MADE SINCE VERSION
IDENTIFIED IN FMSR

E

FMSR

COMMUNICATE MODIFICATIONS MADE TO FILE (AND NOT KNOWN TO CLIENT)
TO THE CLIENT ORGANIZED AS ADDITIONS AND REMOVALS IN CONFIRMATION

168J\

A

CLIENT MODIFIES LOCALLY STORED FILE TO REFLECT MODIFICATIONS NOT
PREVIOUSLY KNOWN TO IT

FIG. 7

US 9,436,700 B2

US 9,436,700 B2

Sheet 6 of 15

Sep. 6, 2016

U.S. Patent

TIVINS = 9zIs

3 NOISH3IA 114

©H>
G=X

WNIA3N = 8zIs
9 =A
=X

a NOISH3A T4

AINIQ3N = szis
G =A
£=X

O NOISH3A 3114

8 Old

¢l

STIVAONTYH

9 =A :SNOILIagy
NOILVINYIINOD

0l

‘STIVAON3Y

TIVIS = 8zis
'S = X :SNOILIaay
HSW4

4-v d3sn

US 9,436,700 B2

Sheet 7 of 15

Sep. 6, 2016

U.S. Patent

6 Old
(1N ¥3HLO)
NOILYWHINOD 5 I
/ PRI plelels
. |_a3uvHs
H_ﬁwm_w%m svezsn, L
ot V GO ¥ N9 1vHD
EQE NG
IN3WNO0Q [« \/W ,
a3dVHS Y IO
, JUYMAEVH
EXFI
Q3uvHS P VY| .o ayvos
TUYMAUVH Zl ONIMVHQ

— 34 P
Q3UVHS | Q3dVHS INo
ERNERERE] JONISTHd
Qyvog NS4
ONIMYHA ¥3sn ¥3sn

U.S. Patent Sep. 6, 2016 Sheet 8 of 15 US 9,436,700 B2

FIG. 10

US 9,436,700 B2

Sheet 9 of 15

Sep. 6, 2016

U.S. Patent

12 / User A-F

User A-F

FIG. 11

U.S. Patent Sep. 6, 2016 Sheet 10 of 15 US 9,436,700 B2

312

U.S. Patent Sep. 6, 2016 Sheet 11 of 15 US 9,436,700 B2

FIG. 14

Today Tomorrow Thu Fri Sat
PM AM Sunny Mostly Mostly
Showers | Clouds/PM Sunny Sunny
Sun
High: 56° High: 53° High: 59° | High: 64° | High: 69°
Low; 50° Low: 44° Low: 46° Low; 50° Low: 50°

FIG. 15

U.S. Patent

Sep. 6, 2016

Sheet 12 of 15

US 9,436,700 B2

206

Legend:

o HEAVY
e MEDIUM
e LIGHT

REAL TIME METRO TRAFFIC - DOWNTOWN

INTERCHANGE

FIG. 16

U.S. Patent Sep. 6, 2016 Sheet 13 of 15 US 9,436,700 B2

FIG. 17

Financial Information
Latest Session 52-Week
Company Symbol Close | NetChg High Low % chg |
AT&T Inc. T 37.59 0.08 42.97 32.95 -5.5
Altria Group Inc MO 22.16 0.06 24.55 19.47 3.6
Amer Int'l Group AlG 46.54 -1.69 72.97 38.50 -33.1
Bank of America BAC 37.61 -0.95 52.96 33.12 -25.5
Bristol-Myers BMV 21.84 -0.26 32.35 20.05 -23.4
CVX Caremark CVS 40.12 -.046 42.60 34.80 14.3
Chevron Corp CvX 92.70 -0.48 95.50 76.40 19.5
Cisco Systems CSCO 24.89 0.38 34.24 21.77 -6.4
Citigroup Inc Cc 25.03 -0.08 55.55 17.99 -52.9
Coca-Cola Co KO 60.35 0.24 65.59 51.03 16.8
Comcast Corp A | CMCSA 20.22 -0.06 29.41 16.11 -26.9
ConocoPhillips COP 84.34 0.45 90.84 67.85 19.5
Corning Inc GLW 25.73 0.03 27.25 20.04 10.3
Dell Inc DELL 19.56 0.09 30.77 18.13 -21.3
Disney(Wait) Co. | DIS 31.46 0.13 36.30 26.30 -9.1

FIG. 18

U.S. Patent

Sep. 6, 2016

Sheet 14 of 15

US 9,436,700 B2

News Reports

News Report 1

News Report 26

News Report 2

News Report 27

News Report 3

News Report 28

News Report 4

News Report 29

News Report 5

News Report 30

News Report 6

News Report 31

News Report 7

News Report 32

News Report 8

News Report 33

News Report 9

News Report 34

News Report 10

News Report 35

News Report 11

News Report 36

News Report 12

News Report 37

News Report 13

News Report 38

News Report 14

News Report 39

News Report 15

News Report 40

News Report 16

News Report 41

News Report 17

News Report 42

News Report 18

News Report 43

News Report 19

News Report 44

News Report 20

News Report 45

News Report 21

News Report 46

News Report 22

News Report 47

News Report 23

News Report 48

News Report 24

News Report 49

News Report 25

News Report 50

FIG. 19

U.S. Patent

Sep. 6, 2016

Sheet 15 of 15

US 9,436,700 B2

Personnel Database, by Name

OVERTIME TRACKING: as of April 22, 2008

Employee Name | ID# | Location | 1STQTR'08 | Current QTR
OT Hours OT Hours
Armstrong, John 2468 | Zone A 60 20
Bittner, Bruce 3355 | Zone J 6 2
Davis, Jena 8750 | Zone B 5 45
Franks, Richard 9930 | Zone A 55 95
Little, David 3098 | Zone A 45 20
Masters, Craig | 5973 | Zone B 8 50
Pyotr, Peter 3345 | Zone B 12 10
Samcyk, Dina 4452 | Zone A 15 35
Utinger, Caryn 5073 | Zone J 8 0
Zypick, Betty 1507 | Zone J 30 18
FIG. 20

Personnel Database, by Zone

OVERTIME TRACKING: as of April 22, 2008

Employee Name ID# | Location 1ST QTR '08 Current QTR
OT Hours OT Hours

Armstrong, John 2468 | Zone A 60 20
 Little, David 3098 | Zone A 45 20

Samcyk, Dina 4452 | Zone A 15 35

Franks, Richard 9930 | Zone A 55 95

Davis, Jena 8750 | ZoneB 5 45

Masters, Craig 5973 |[ZoneB 8 50

Pyotr, Peter 3345 | Zone B 12 10

Bittner, Bruce 3355 |[ZoneJ 6 2

Utinger, Caryn 5073 | ZoneJ 8 0

Zypick, Betty 1507 [Zone J 30 18

FIG. 21

US 9,436,700 B2

1
METHODS AND PROGRAM PRODUCTS
FOR COMMUNICATING FILE
MODIFICATIONS DURING A
COLLABORATION EVENT

CROSS REFERENCE AND RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 12/150,705 filed Apr. 30, 2008, which is a
continuation in part of U.S. patent application Ser. No.
11/903,915 filed on Sep. 25, 2007 (now issued as U.S. Pat.
No. 8,144,632), which in turn claims priority to U.S. Pro-
visional Application No. 60/847,061 filed on Sep. 25, 2006;
is a continuation in part of U.S. application Ser. No. 11/477,
069 filed Jun. 28, 2006; and is a continuation in part of U.S.
application Ser. No. 11/477,169 filed Jun. 28, 2006 (now
issued as U.S. Pat. No. 8,023,437).

FIELD

The invention relates to updating an electronic file. Addi-
tional fields include methods and program products for
communicating file modifications during a collaboration
event such as a video conference.

BACKGROUND

Data communication over a data network (such as, for
example, the Internet, Wide Area Network or Local Area
Network) often requires the updating of a file. This may
include updating a file between a client and server, for
instance. One method for doing so is to communicate the
entire file between computers every time it is updated. This
approach can be cumbersome, however, if the file is large,
if there are numerous users, if the updates occur frequently,
if the files should be updated promptly, and under other
circumstances. Extensive bandwidth and other network
resources may be required. In this context, a file may be
understood to include any type of similarly structured,
electronic data records, including, by way of example, a
database file, data stored in a markup language format (such
as HTML or XML) files, raw data, a JPG image, a Word
document, an MP3 file, a video file, and the like.

A large-scale collaboration event over a network, where
multiple users are sharing and modifying a single file, may
involve the updating and sharing of files. In such a case, the
communication of the entire file upon the file being updated
can prove an inefficient use of system resources. In a
videoconference between many users, for example, many
files may be resident on a server that are regularly updated
and accessed by multiple different users. One or more
servers may maintain files that list which users are present,
for example, with the list changed every time a user enters
or exits the event. Also, the multiple users may be collabo-
rating on a file such as a word processor document, a
drawing, or the like. Other files may be maintained by the
server with technical information regarding the status of
computer hardware and software being used by each user
during the videoconference.

SUMMARY

One example method for communicating a file modifica-
tion during a collaboration event includes steps of a first
computer communicating a file modification status request
to a second computer, the status request including at least a

20

25

30

40

45

60

2

file identifier and a file property. The second computer uses
the file identifier from the request to identify a current
property of a corresponding file. The second computer
compares the current file property to the file property from
the status request and communicates a response to the first
computer when the current property does not match the
property from the status request.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic of a network useful to illustrate
practice of some embodiments;

FIG. 2 is a schematic of one example video conference
attendee room useful to illustrate practice of some embodi-
ments;

FIG. 3 is a schematic of a second example video confer-
ence attendee room useful to illustrate practice of some
embodiments;

FIG. 4 is a flowchart useful to illustrate some example
embodiments;

FIG. 5 is a flowchart illustrating one example set of
alternate steps for a portion of the flowchart of FIG. 4;

FIG. 6 is an illustration of a drawing board screen useful
to illustrate an example embodiment;

FIG. 7 is a flowchart useful to illustrate example embodi-
ments;

FIG. 8 is a schematic of a network useful to illustrate
example embodiments;

FIG. 9 is an alternative schematic of a network useful to
illustrate example embodiments;

FIG. 10 is an additional schematic of a network useful to
illustrate example embodiments;

FIG. 11 is an additional schematic of a computer con-
figuration useful to illustrate example embodiments;

FIG. 12 is an additional schematic of a computer and data
input configuration useful to illustrate example embodi-
ments;

FIG. 13 is an a schematic of a computer and data input
configuration useful to illustrate example embodiments;

FIG. 14 is an additional schematic of a computer and data
input configuration useful to illustrate example embodi-
ments;

FIG. 15 is a representation of a file that may be used with
example embodiments;

FIG. 16 is a representation of an additional file that may
be used with example embodiments;

FIG. 17 is a representation of an additional file that may
be used with example embodiments;

FIG. 18 is a representation of an additional file that may
be used with example embodiments;

FIG. 19 is a representation of an additional file that may
be used with example embodiments;

FIG. 20 is a representation of an additional file that may
be used with example embodiments; and

FIG. 21 is a representation of the file shown in FIG. 20,
wherein the file has been reconfigured.

DETAILED DESCRIPTION OF EMBODIMENTS

Before discussing particular features of example embodi-
ments in detail, it will be appreciated that the present
invention may be embodied in a method, system, and/or
computer program product. For example, a method accord-
ing to one embodiment may be carried out by one or more
users using computers or by one or more computers execut-
ing steps of the invention, and a program product of the
system may include computer executable instructions that

US 9,436,700 B2

3

when executed by one or more computers cause one or more
computers to carry out steps of a method of the invention.
The program instructions of embodiments of the invention
may be stored on one or more computer readable media
(such as a memory), and may cause results of computations
to be stored in one or more memories and/or to be displayed
on displays.

Further, one or more computer(s) in combination with
connected hardware such as one or more of cameras, micro-
phones, monitors, projectors, and the like that are carrying
out steps of a method of the invention and/or that are running
a program product of the invention. It will therefore be
understood that in describing a particular embodiment of the
present invention, descriptions of other embodiments may
also be made. For example, it will be understood that when
describing a method of the invention, a system and/or a
program product of the system may likewise be described,
and vice-versa.

Turning now to the drawings, FIG. 1 is a schematic of a
network 10 that is useful to describe example methods,
program products and systems of the system. The network
shown as a “cloud” 10 includes one or more computers 12
that link a User A (or, for example, Users A-F) to one
another. The term computer as used herein is intended to be
broadly interpreted as at least one electronic device that
accepts, processes, stores, and outputs data according to
programmed instructions. Thus, a computer can include, by
way of example and not by way of limitation, a laptop
computer, mainframe computer, cell phone, personal digital
assistant, and processor-based controller on a machine. The
computers 12 may also comprise one or more components
for linking communications between users. It may include,
for example, one or more processor based devices linked to
one another for communications and each having a plurality
of communication ports, a software component running on
one or more memories that facilitate communications, a
networking card(s), a modem(s), and the like.

The computer 12 can be referred to in the video/audio
conferencing and networking arts as a “bridge” (or as
containing a bridge) which can be, for example, a software
component running on a server or router that controls one or
more ports for interconnecting the Users A-F. As used herein
the term port is intended to be broadly interpreted as a
physical or logical destination and/or origination point for
digital communications. Examples of ports include but are
not limited to, network cards, an IP address, a TCP or UDP
port number, and the like. A bridge may also comprise
software useful to, for example, specifies one or more ports
for communication between those users.

The network 10 may be a digital or analog communica-
tions network, with a packet switched protocol network
being one example. A particular example includes a plurality
of computers electronically linked to one another and com-
municating data to one another in internet protocol (IP)
format. The network 10 may be a physically wired network,
may be a wireless network, or may be some combination of
wired and wireless. The network 10 may the Internet, a
private network, a public network, a virtual private network,
Local Area Network, Wide Area Network, or, of course, a
successor to the current Internet (such as, for example, the
“Fast Internet,” or “Grid,” currently under development by
the European Centre for Nuclear Research (CERN) based in
Geneva, Switzerland. The CERN “Fast Internet” is expected
by some to transmit data orders of magnitude faster than
what is currently understood to be broadband speed. The
Fast Internet and each other successors to the Internet are
referred to herein simply as fast versions of the Internet.

10

15

20

25

30

35

40

45

50

55

60

65

4

The protocol between the computer 12 and the Users A-F
may be that of a server and client. The server client rela-
tionship between the computers 12 and the Users A-F may
be reversed on occasion, wherein for some tasks the com-
puter 12 is the client and the User A-F the server, and
vice-versa for other tasks.

The network 10 may be useful for a number of data
communication purposes. In an example application, the
network 10 is useful to facilitate a real-time communications
session, such as a video or audio conference, between one or
more of the Users A-F. Examples of a video communications
session include a videoconference wherein two or more of
the Users A-F share streaming video and/or audio commu-
nications in real-time with one another.

As used herein the term “real-time” is intended to broadly
refer to a condition of generally corresponding to actual
time. For example, data can be real-time if it takes about one
minute of data playback to describe an event that took about
one minute to occur. Real-time data may be, but is not
necessarily, “live” data that is generated and communicated
substantially contemporaneously with minimal delay or
such that the delay is not obtrusive with respect to a
particular application. As an example, delay of less than
several seconds, or less than 1.0 or 0.25 second, or another,
similar time between an event and a communications of such
event to another computer user may be considered live for
the purposes of the present system.

In a videoconference, for example, multiple participants
may be sending and receiving live real-time video and audio
data to one another—each is talking to one or more of the
others in real-time with delay at a suitably minimal level so
that “conversations” between users over the network can
take place in real-time. It will therefore be appreciated that
the terms, “live” or “real-time” when used in this context is
not limited to zero delay, but instead that some minimal
delay is allowed for which may be for example of the order
of several seconds. The delay should not be so great as to
cause difficulties in different users communicating with one
another—delays greater than about 5 seconds may be unsuit-
able in many applications.

In many videoconference or other real-time collaboration
events, all of Users A-F may see and hear all others of Users
A-F by simultaneously communicating streaming audio and
video data streams to all others of the Users A-F. Commu-
nications between each of the Users A-F may be carried out
on a two-way basis from the network 10, with data sent to
and received from each of the Users A-F over the commu-
nications lines 14. These may comprise physically wired
connections such as copper wires, optical fiber cables, or the
like; or may be wireless connections. Real-time video,
audio, and other data may be communicated from each of
the Users A-F to all others of the Users A-F through the
bridge 12 and over the communications lines 14. A firewall
16 or other security device may isolate the Users A-F from
the network 10. The firewall 16 has been illustrated in FIG.
1 as located on the communications link 14. This has been
done for illustration only—the firewall 16 may be at any
desired location useful to monitor and control access of
traffic between a User A-F and the network 10.

Those knowledgeable in the art will appreciate that com-
munications over the network 10 between the Users A-F
may be carried out in any of a number of generally known
procedures. For example, known methods of one or more of
uni-, multi-, or broad-cast may be used. Also, the data may
be streaming. In a streaming video communications session
application, each User A-F may have one or more cameras,
telephones and/or microphones from each of which is

US 9,436,700 B2

5

streamed a continuous, real-time data on a particular mul-
ticast address and port number. As used herein the term
continuous data stream is intended to broadly refer to a data
stream sent in substantially continuous succession, although
some degree of intermittency is contemplated.

For example, a packetized data stream in IP may be
continuous and streaming even though there may be some
delay between discrete packets. Different protocol commu-
nications may be supported by the network 10 and the users
A-F, including but not limited to ITU H.320, ITU H.323,
ITU H.324, SIP (session initiation protocol), RTP (real time
protocol), RTSP (real time streaming protocol), RTTP (real
time transport protocol), HTTP (hyper text transfer protocol)
and other suitable protocol for initiating and communicating
real time and streaming data. It will be appreciated that when
used in this context, the term “communicated” is intended to
be broadly interpreted and does not require direct commu-
nication. For example, a first User A may communicate data
to a second User B, even though the data passes through a
number of intermediate nodes between origination and final
destination.

Communications of the streaming data between Users
A-F may be further appreciated through consideration of
FIGS. 2-3 that schematically show some representative
configurations of the Users A-F. As shown by FIGS. 2-3, the
Users A-F may be conference rooms, class rooms, or other
spaces in which multiple individuals gather to participate in
the video communications session with other individuals
that are located at others of the Users A-F. FIG. 3 illustrates
an alternate configuration in which a single individual is
participating in the conference from, for example, a home
office, a hotel room, or other location. Each of the Users A-F
can use one or more cameras 18 that are directed at an
audience A, an instructor S, or other things or people. In
FIG. 3, only an audience A is present (which may be only
one individual—or may be more).

Many different cameras will be appropriate for practice of
example embodiments, with suitable examples including
those available from LOGITECH Co., Fremont Calif. (e.g.,
Logitech QuickCam Pro 4000), the MICROSOFT LifeCam
VX-1000, the SONY EVI D100 series and/or the CANON
VC series of remote pan/tilt cameras, and the like. With
reference to FIG. 2, the cameras 18 at one User A-F may be
trained on different people or things at that location, with an
example being one camera 18 at an audience A and one
camera 18 at a speaker S. The cameras may be controllable
remotely, so that User A may be able to direct the direction
of a camera 18 at User B, for instance. At other locations,
with examples shown in FIG. 3, only one camera 18 is
present.

In FIG. 2, two microphones 20 are provided—one for
receiving audio from the instructor S and a second for
receiving audio from the audience A. There are a wide
variety of suitable microphones available for practice of
embodiments of the system, including by way of example
SONY ECM microphones, PHOENIX Duet microphone,
POLYCOM microphones, and the like. Although not illus-
trated, those knowledgeable in the art will appreciate that
other cameras, microphones, computers, gateways, fire-
walls, mixers, multiplexers, and like devices may also be
present depending on desired video communications session
details and other factors.

With reference to FIG. 3, only a single camera 18 is
provided and a single microphone 20 along with a laptop
computer 34. This might be useful for allowing an individual
to participate in a video communications session from a
home office, while traveling in a hotel room or on a plane,

20

40

45

50

55

6

or the like. The camera 18 (such as a LOGITECH Quick-
Cam) and microphone 20 might be combined on a laptop
mountable unit, for instance, and the speaker 32 (and an
alternate microphone 20) might be headphones worn by the
user. Suitable headphones include those available from
PLANTRONICS Corp. This example configuration is par-
ticularly convenient for portable participation in video com-
munications sessions.

In an example video communications session such as a
videoconference, each of the Users A-F not only sends
streaming video and audio data, but likewise receives
streaming video, audio, and other data communicated from
some or all of the other Users A-F. Referring once again to
the schematics of FIG. 2-3 by way of example, one or more
projectors 26 may be provided to project real-time video
images 28 from one or more of the other Users A-F on a
screen 30.

There are a variety of suitable projectors widely commer-
cially available, with examples including those from INFO-
CUS Co. such as its LP series, TOSHIBA TDP series, NEC
MT series, SHARP PG series, and IBM projectors. The
projectors may have specification as are appropriate for a
particular application, with an example being having at least
2000 lumens and XGA resolution. Also, it will be appreci-
ated that use of a projector to display output images may
easily be replaced with use of a monitor on which output
video images are viewed. For example, FIG. 3 illustrates a
laptop computer 34 the monitor of which may be useful to
display output video data streams 28 from others of the
Users A-F. Other larger size monitors may also be useful for
display of video data, with examples including standard
cathode ray tube monitors, 19", 40", 50" and larger plasma,
LCD and other technology monitors. One or more speakers
32 may also be provided to play real-time audio from the
other users or other sources.

Any number of video images may be provided that show
video data in real-time from any number of other cameras or
other sources located at the other users. For example, the
user A may simultaneously display output video data
streams 28 from each of the other users B-F, or may choose
to display on a select subset of those streams. The display of
streams may be set as desired, with different output display
streams 28 located in different locations on the display 30.
Further, the output video streams 28 may include charts,
graphs, documents, other digital files, replayed video files,
and the like. Digital documents such as charts, word pro-
cessor documents, spreadsheets and the like may be input to
any of the computers 34 at any of the Users A-F for display
at all or some of the other Users’ locations. Likewise, digital
images, including stored video streams and digital docu-
ments, for instance, may be stored in a memory accessible
over the network 10 for replaying during the video commu-
nications session at any or all of the Users A-F. Output video
streams 28 may be manipulated as desired, with examples of
manipulation including moving the images, resizing the
images, and the like.

A particular example of a data file in addition to audio and
video data includes shared files (sometime referred to as
documents) having text, images, numerical values, and the
like. For example, within a videoconference or virtual
meeting different of the Users A-F at different locations may
desire to all work on a single document. In such circum-
stances, the single document may be described by a shared
file stored on the network and which can be modified by any
of the Users A-F. Each User A-F receives continuous

US 9,436,700 B2

7

updates of the document so they are aware in close to or at
real-time of modifications and the current state of the
document.

A variety of other shared files may be useful in conducting
collaboration events within practice of the system. It may be
useful, for example, for each of the Users A-F to know in or
close to real-time which other Users are connected to the
network 10 and available for conferencing. This can be
accomplished through maintaining a shared user presence
file on the network 10 that is regularly updated to reflect
currently available Users A-F. Users A-F also receive regular
updates of the shared user presence file to indicate current
status of other Users. Other examples include shared files
maintained on the network 10 that list the current status of
hardware at each of the Users A-F (e.g., which of cameras
18 and microphones 20 are on, what their settings are, etc.),
chat applications, and others.

The one or more computers 34 at each of the Users A-F
may be used to receive and send all of the video, audio,
documents, digital files and other data at the standard user A.
The computer 34 may be referred to as a client computer or
client, although as noted above it may also function at times
as a server with the computer 12 being a client. A variety of
computers that are currently commercially available will be
suitable for use as computer 34, with examples including the
Dell Precision 470 with dual processors and the HP Work-
station XW6000 dual processor.

As with the computer 12, the computer 34 is intended to
be broadly interpreted and is not limited to a single, desktop
type computer as illustrated. Other devices that include a
processor capable of executing instructions may be used,
although they may sometimes be referred to as a device
other than a “computer.” Accordingly, the term “computer”
as used herein with reference to computer 34 (and computer/
server 12) is intended to be broadly interpreted. Examples
include, but are not limited to, media communications
devices having a processor, communications devices such as
processor enabled phones or personal digital assistants,
processor based gaming devices, and the like. Further, the
computer 34 may be comprised of two or more computers
linked to one another.

An application program, including one or more codecs,
are running on the computer 34 to provide signal coding/
decoding, compression/decompression, to coordinate
receiving and sending of the data streams, and to control
other aspects of sending and receiving of the data streams.
For example, the computer 34 may be used to control which
or how many video images 28 are displayed on the screen
30, to size the images 28, to set audio levels for the speakers
32, and the like. Each computer 34 may be running a video
codec, an audio codec, other codecs, one or more application
programs, and other programs. These may be combined into
a single application program or may be separate from one
another. The computer 34 may also have video and audio
capture cards, with an example being WEBCAM Corp. 4
input video capture card.

According to the configurations of FIGS. 1-3, a commu-
nications session such as a videoconference or other virtual
meeting can occur between two or more of the Users A-F.
The Users A-F may virtually “attend” an immersive and
extensive virtual meeting that includes audio, video and/or
other streaming data shared in real-time. Participants at each
of the Users A-F may simultaneously hear and/or view data
from all others of the Users A-F. As discussed above, one or
more Users A-F may collaboratively work on one or more
shared documents held on the network 10 with each receiv-
ing regular updates of modifications made by others. Such
meetings may be desirable for corporations, universities,

20

40

45

50

55

8

government, and other groups of people located remotely
from one another that find it useful to interact in an envi-
ronment that allows a greater level of intimacy than an
audio-only phone call or a single image video conference.

Applications for use of video communications sessions of
the present system include, but are not limited to, distance
learning, medical consultation, industry collaboration, social
interaction, government or university collaborative research,
entertainment, gaming, financial market trading, and the
like. In a distance learning application, a professor at one site
(e.g., User A) may be able to take questions from students
located at many additional sites (e.g., Users B-F), which can
be locally located (e.g., different rooms or buildings in same
campus) or very far from one another (e.g., different cities,
states or countries).

In some communications sessions of the system, each of
the sites can view and hear all of the other sites. In a medical
consultation application, doctor specialists from around the
country can participate in the diagnosis of a particular case.
X-rays can be viewed by all, and each doctor at each location
can discuss the case with all of the other participating
doctors. In an industrial collaboration application, remotely
located engineering, marketing, management, and labor
teams may all discuss development of a new product. Each
site may ask questions of any other site, and each site may
submit documents and charts covering aspects of the project
for which they are responsible.

Having now described a typical network supporting a
collaboration event such as a video conference that may find
utility in practicing methods, systems, and program products
of the system, more particular detail regarding some
example embodiments can be provided. Some embodiments
of the system may be broadly categorized as conditioned/
conditional requests and notifications between clients and
servers.

So-called conditional requests require that the request be
responded to upon satisfaction of a request. For example, a
client may issue a “GET” request on some status informa-
tion on a conditional basis. Under such a circumstance, the
client will receive the status information if some condition
is satisfied. For example, a client may issue a conditional
GET STATUS request on the condition that the STATUS
information has changed since it was last retrieved. This can
be thought of logically as being on the basis of an “if”, and,
in fact, can be accomplished in some protocols by using an
“if” command in a header.

Once again referring to hypothetical computer code by
way of illustrating an example, the command: “GET STA-
TUS(007) IF MODIFIED SINCE(TIME1)” would result in
data corresponding to the status of (007) being returned only
if that data had been modified since (timel). A more detailed
code example of a conditional GET request is:

GET HTTP/IG.ACME.COM/USERS/ACHAPWESKE/STATUS. XML
HTTP/1.1 IF-MODIFIED-SINCE: SAT, 29 OCT 1994 19:43:31
GMT

It STATUS. XML has been modified since the specified
date/time (SAT, 29 OCT 1994 19:43:31 GMT), the response
would be:

HTTP/1.1 200 OK
CONTENT-LENGTH: 41
<ONLINEOROFFLINE>ONLINE</ONLINEOROFFLINE>

US 9,436,700 B2

9

If, on the other hand, that resource has NOT been modified
since the specified date/time, the response would be:

HTTP/1.1 304 NOT MODIFIED

Embodiments of the present system, however, introduce a
previously unknown step of performing a “conditioned”
request. A conditioned request, as used in the present dis-
closure, may be broadly thought of as a logical “when” as
opposed to an “if” That is, a conditioned request asks for
information not on satisfaction of an “if” condition, but
instead upon satisfaction of a “when” condition. Again
referring to hypothetical computer code by way of illustrat-
ing an example, the conditioned command: “GET STATUS
(007) WHEN MODIFIED” would result data corresponding
to the status of (007) being returned only when that data is
modified. The above example detailed code example of a
conditional request can be altered through a step of a system
embodiment to be re-expressed as a conditioned request as
follows:

GET HTTP//IG.ACME.COM/USERS/ACHAPWESKE/STATUS. XML
HTTP/1.1 WHEN-MODIFIED

In this case, when (not “if””) STATUS. XML is modified the
response would be:

HTTP/1.1 200 OK
CONTENT-LENGTH: 41
<ONLINEOROFFLINE>ONLINE</ONLINEOROFFLINE>

As illustrated through these examples, steps of a condi-
tioned request have advantages over a conditional request in
some applications with one example being communicated
only once to “wait” for a change, as opposed to being
continuously and repeatedly communicated to “look™ for a
change.

Conditioned requests have been discovered to have sig-
nificant benefit and utility in some real-time communica-
tions session embodiments of the present system, with a
particular example being a multi-user video conference.
When practicing a method of the system using traditional
client-server architecture, clients generally cannot commu-
nicate directly with one another to obtain certain informa-
tion. Although direct communication can potentially be
made between clients, such communications can be com-
plicated. Typical client-server architecture relies on clients
requesting that actions be performed by a server, and one
client requesting information directly from another client(s)
(i.e., requesting another client to take an action) conflicts
with this general architecture. Instead, in typical client-
server architecture applications, clients generally rely on
indirect communication with other clients through a server.
A first client requests the server to report some information
about a second client, such as status. This can complicate
and slow notifications, however.

For example, one user may desire to know when a second
user joins or leaves a data communications session such as
a videoconference. This can be difficult when operating
within traditional client-server architecture. In such circum-
stances, a first client might be required to continually send
a request to a server, with an example being: “GET STATUS
(USER2).” Some efficiency might be achieved by using a
conditional request: “GET STATUS(USER2) IF
CHANGED SINCE (TIME1)” to reduce the reported STA-
TUS data (which in one video conference application can be
thought of as availability status—is User2 available to

10

15

20

25

30

35

40

45

50

55

60

65

10

participate in a video conference?). Under either alternative,
however, requests have to be continually sent to monitor the
status of user2. This situation of repeated or even continuous
polling consumes bandwidth and requires frequent actions
on the part of the client and server (or source and sink).

Some methods, systems and program products of the
system, however, provide improvement through conditioned
requests in a client-server architecture. For example, a
conditioned request may be used to request a notification in
a real-time communications session. The above illustrated
commands of the prior art, for instance, can be replaced with
the conditioned request: “GET STATUS(USER2) WHEN
CHANGED.” A conditioned request of the system need only
be sent once, and a responsive report of status of user2 will
only be made when (i.e., not “if”) that status changes. A
conditioned request may include one or more parameters
that define the “condition” to be satisfied before the method
is executed, with an example being the condition that
STATUS(USER2) (e.g., availability status) must change
before the GET method is executed in the above example
conditioned request.

Particular examples of conditioned requests that may be
practiced in embodiments include conditioned notifications,
status requests and the like. One particular example of a
conditioned request in a method, system and program prod-
uct of the system is a conditioned status request communi-
cated by one user to a sink concerning a second user.
Referring to FIG. 1 by way of illustration, User A may
communicate a request including the conditioned availabil-
ity status request to “GET STATUS (USER_B) WHEN
CHANGED to a server on the network 10. The request is
responded to by the server with the result that the status of
“USER_B” is communicated back to the client (User A)
when that status changes.

Conditioned requests are applicable to other requests in
addition to GET requests illustrated above. Also, condi-
tioned requests may be based on conditions other than a time
parameter as was illustrated in the above examples. One
example is comparison of an identifier that indicates the
version of a file. For example, a “does not equal,” “when-
none-match” or similar logical operator can be used in a
conditioned request with a header parameter. The result of
use of such an operator is to compare the values specified.
When the compared values don’t match the condition is
satisfied.

One such conditioned request example useful in embodi-
ments compares version numbers of files (or resources)
between the most recent known to a client (or a source) and
the most recent known to or available from a server (or a
sink). If the version numbers don’t match, a modified
version is available. For example, a GET response can return
a “tag” header from a file that specifies an ID that uniquely
identifies the current version of that file (e.g., “Tag:
ABCXYZ123”). When the file is modified, its tag changes.
A GET response can also include the tag(s) of the version(s)
of the file currently known to the client (e.g., GET Tag
(Recorder_3) when TAG Does_Not_Equal: ABCXYZ123).
When the tag of the file at the server differs from those
currently known (e.g., “when-none-match” or “not-equal-
10”), a response is issued.

This operates similar to the above illustrated “When-
Modified-Since” operator, except an opaque identifier con-
dition is relied on instead of a time value. This can be
advantageous in some situations, with one example being
when a file is modified within one second of an issued
response—if the timestamp’s resolution is 1 second, there is

US 9,436,700 B2

11

an opportunity to miss a modification or get an extraneous
copy if relying on a “when-modified-since” condition.

Particular example embodiments of the system may be
further illustrated through consideration of the following
examples. One embodiment of the system has been discov-
ered to be particularly useful for maintaining a shared file on
a network in a collaboration application where updates are
frequently communicated to multiple users as the shared file
is updated by other users. An embodiment of the system may
be described as a highly efficient method for communicating
only the modifications of an updated shared file to users, and
only communicating that modification when the shared file
changes. Such embodiments achieve important advantages
and benefits over the prior art, including reduced resource
consumption, increased stability, and others.

FIG. 4 is a flowchart useful to illustrate some example
methods, systems and program products of the system. A
client (which may be one or more of the Users A-F, FIGS.
1-3) communicates a file modification status request
(“FMSR”) to a server (such as server 12, FIG. 1). Block 102.
The FMSR can be in any desired format, and can take any
of many suitable forms. It may be a single, discrete com-
munication, or may be embodied in several discrete com-
munications. In the example embodiment of FIG. 4, the
FMSR includes at least a file identifier useful to identify a
particular file and a file property.

The file may be any number of suitable files, with
examples including XML documents located anywhere on a
network (such as network 10, FIGS. 1-3). Some example
files are files that are collaboratively shared between two or
more clients whereby each of the clients is required to be
regularly updated of modifications made to the file by others
of'the users. Some example files include information such as
collaboration user status, hardware settings of other users or
devices, collaborative input from users, and the like. Files
are not limited to data that is (or can be) stored on a memory
medium, but instead also include data that is not stored on
any memory medium.

The file identifier can be any information useful to iden-
tify the file. It can be a file name and may also include
information for locating the file. It can be, for example, a
URL that specifies the file and a network accessible location
or can be XML formatted data that likewise includes infor-
mation describing where the file may be found. Because the
file is regularly updated, it includes a version number that
changes with updates.

The file property can be any of a variety of properties for
the file that change when the file is modified. The property
can be, for example, a version number, a file size, or others.
One particular property that has been discovered to be useful
in many invention embodiments is a file version number or
identifier that can be used to identify a particular version of
the file, with alphanumeric characters being one example. It
will be appreciated that a version (or file) “number” is not
limited to being numerical, but instead may be any suitable
data to identify a particular file and/or version of that file.
When operating using HTTP, a file version identifier can be
the entity tag (or ETag) value. Also, the file version number
need not necessarily be included in or with the shared file.
It may be, instead, separately maintained but associated with
the shared file. It can also be, for example, a time or
sequence stamp, and may be contained in a header of the
shared file.

Also, it will be appreciated that although the file identifier
and version identifier/version number may be discussed and
illustrated herein as individual datum and as being discrete
from one another, in some embodiments they may be

10

15

20

25

30

35

40

45

50

55

60

65

12

contained within a single data element. A single alphanu-
meric string, for example, can include both the file identifier
and the version number.

After receiving the FMSR, the server uses the file iden-
tifier contained therein to locate the file and retrieves its
current property. Block 104. The server then proceeds to a
series of steps contained in dashed line box 105. These steps
may be thought of as processing a conditioned request. First,
the server compares the current property from to the prop-
erty from the FMSR. Block 106. If they match, then no
modifications to the shared file have occurred since the
version specified in the FMSR. That is, the file version
communicated from the client is the same as the most
current file on the network 10, and there are therefore no
modifications to the shared file to notify the client of.

The method of FIG. 4 will then loop back to continually
check the file current property until a mis-match is deter-
mined. In some embodiments, this loop will continue indefi-
nitely until a mis-match of properties is discovered (i.e.,
until the shared file has been modified and its property
changes). This might occur, for example, if the file property
is a version number which has been changed upon modifi-
cation of the file.

In the method of FIG. 4, however, the server determines
whether a time-out value has been exceeded. Block 108.
Time-out values are useful in some applications to avoid
unforeseen errors, network instability, and other unwanted
results that may occur when a looping process is otherwise
allowed to run endlessly until a condition is satisfied. The
time-out value may be set as desired depending on particular
application parameters. In many example videoconference
and real-time collaboration applications, values of between
about 2-3 minutes have been found to provide unexpected
results and benefits. The number of cycles through the
looping logic will vary with application, timeout value and
other design parameters, with 30 or more cycles being an
example value.

The embodiment of FIG. 4 also includes a determination
by the server of whether a “keep alive” request has been
received from the client. Block 110. Should the client not
receive a response from the server (i.e., the comparison of
file version identifiers did not yet result in a mismatch), and
should the client wish for the server to continue to check for
file modification, it can communicate keep-alive requests to
the server to “override” a timeout condition. Clients may
continually communicate keep alive requests at some rea-
sonable set interval, or may do so on an interval that is set
to be just less than the time out value. Intervals of between
about 10-20 seconds have been discovered to provide unex-
pected results and benefits in large scale video conferences
and collaboration events. If the time out value has been
exceeded and no keep alive requests have been received, the
embodiment of FIG. 4 terminates. Block 112. Otherwise, the
embodiment of FIG. 4 loops back to continue to compare file
version identifiers.

It will be appreciated that the time-out and keep-alive
request steps discussed above and illustrated by blocks
108-112 of FIG. 4 are optional steps that have been discov-
ered to provide benefits and advantages in some embodi-
ments. Other embodiments may not include these steps.
Further, some embodiments may include steps of using a
timeout value only but not a keep-alive request step.

When the current file version identifier does not match the
version identifier from the FMSR at block 106, a “no”
decision results. This indicates that some modification has
been made to the file to change it from the state it was in
when it had the version identified contained in the FMSR,

US 9,436,700 B2

13

and that the client is therefore not aware of these modifica-
tions. A confirmation is then communicated to the client.
Block 114.

In considering the embodiment of FIG. 4, it will be
appreciated that through the steps of looping contained
within dashed line box 105, this embodiment effectively
operates using a conditional “when” logic as opposed to “if”
logic. That is, the looping steps cause the embodiment to
communicate a confirmation “when” the condition is satis-
fied (“when” a modification is detected)—not “if” the con-
dition is satisfied.

Practice of embodiments of the system utilizing these
steps have been discovered to provide important, unex-
pected and unpredictable advantages and benefits over the
prior art. For example, client server communications often
occur using streaming or other synchronous protocols, with
examples including HTTP and RTSP. In such protocols,
client server communications are immediate—a client com-
municates a request to a server and the server responds.
Achieving a file status change notification under such pro-
tocols has in some past systems required constant and
repeated polling of the server by the client. This requires
significant bandwidth for communications between the cli-
ent and server as well as significant computational resources
at both the client and server ends to process the constantly
polled requests and responses.

Practice of embodiments of the system (with an example
being that of FIG. 4) offer great advantage and benefits over
these methods, systems and program products of the prior
art. For example, in embodiments such as that illustrated by
FIG. 4 only a single request need be sent from the client to
the server. No repeated or constant polling is required. The
server, even if communicating with the client in a synchro-
nous format (such as HTTP, RTSP or other streaming
protocol) through practice of the system processes that
single request in a manner that may be considered to
effectively be non-streaming or asynchronous. Modification
requests are communicated to the client only “when” nec-
essary.

This represents a significant achievement of correspond-
ing embodiments. Prior to the present system, systems and
methods have struggled to efficiently achieve communica-
tion of updates of shared files in group collaboration appli-
cations because of this synchronous architecture. Embodi-
ments of the present system, with FIG. 4 being one example,
provide an elegant solution to these otherwise unresolved
needs. Significant and unexpected benefits are achieved,
including reduction of communications overhead, network
latency, and consumption of network resources.

As discussed above, although consideration of a shared
file version number is useful to determine when a modifi-
cation has been made, other examples of the invention use
other properties of the shared file. Any number of properties
of a shared file may be reviewed to indicate whether a
modification has occurred. Some examples include the size
of the shared file (presumably it becomes larger when data
is added and becomes smaller when data is deleted), shared
file location (the shared file could be stored in a new location
upon modification), shared file date stamp, a logic modifi-
cation flag that changes every time the file is opened, and the
like. Any of these or similar properties can be used in
different embodiments of the invention.

For example, in another example embodiment, the client
communicates with the FMSR a shared file size to the server
in block 102 instead of a shared file version number. In this
example embodiment, the server compares the shared file

10

15

20

25

30

35

40

45

50

55

60

65

14
current size to the size provided in the request to determine
if the shared file has been modified. Block 106.

Referring again to block 114 of FIG. 4, in some embodi-
ments the confirmation communicated from the server to the
client is simply a confirmation that modification has
occurred. In other embodiments, however, other information
is included in the confirmation. For example, a summary of
the modifications to the file may be communicated to the
client. It has been discovered that significant advantages to
bandwidth and other network resource consumption issues
are achieved by communicating only the modifications to
the file, and not the entire file. Put another way, some
embodiments inform the clients of only what has changed in
the updated file to reduce the amount of data required to be
communicated and processed. This has been discovered to
provide significant advantages and benefits, particularly
when frequent updates are provided, when the modified data
is small in comparison to the overall file size, and in other
circumstances.

In some embodiments, further benefits and advantages are
achieved by configuring the confirmation in the form of a
markup language document, with one example being an
XML document. Additions to the file since the previous
version (that identified by the version identifier in the
FMSR) are placed in one defined field of the XML docu-
ment, and deletions made to the current version as compared
to the previous version are placed in a second defined field
of the XML document. The document may contain, for
example, “add” and “delete” root portions.

Still further significant advantages and benefits over the
prior art are achieved through such steps, particularly when
the shared file is in a markup language format such as XML
as is the corresponding file copy maintained by the client.
Those knowledgeable in the art will appreciate the ubiqui-
tous use of markup language data in modern network
applications. Markup languages such as XML provide good
levels of functionality related to encoding properties of data.
In addition to simply providing a data value (e.g., “x=6"),
markup languages such as XML allow for useful informa-
tion about the data value to be conveniently coded (e.g.,
“x=6 and should always be less than Y, should be a multiple
of Z, cannot be modified by User C, and is located on the
third page, fifth line of the spreadsheet™).

Embodiments of the present system exploit the function-
ality and flexibility of markup languages by extending their
use to include the FMSR, the shared file on the network 10
(FIG. 1), the confirmation, and the file maintained by the
client computer. In this manner, markup language formatted
data maintains its form throughout the journey from client
(User A-F), to server 12, and back to the client. This results
in an essentially single shared document being distributed
across the client (User A-F), the server 12, and all points
between. No conversion of data is required, as is often
required with prior art systems and methods. This reduces
required resources, eliminates an opportunity for conversion
error to be introduced, increases stability of the process,
increase system stability, and increases the speed of execu-
tion. As described above, advantages are achieved by com-
municating modifications to the shared file to the client only
as opposed to the entire file (as well as communicating these
modifications only “when” they occur through the logic of
dashed line box 105). Further advantages can be achieved in
some embodiments by organizing the modifications into
“additions” and “removals” to the shared file.

FIG. 5 illustrates one set of example steps that are one
possible subset of step 114 for communicating only the
modifications and for organizing these modifications into

US 9,436,700 B2

15

additions and removals. A comparison of the most current
version of the file is made to the version identified by the
FMSR (i.e., the most recent version that the client is aware
of) and any differences between the two versions are iden-
tified as modifications made to the file between those two
versions. Block 116. These two versions need not be sequen-
tially adjacent—in some circumstances there may be one or
more file versions between the most current version and the
version specified by the FMSR.

The identified modifications are then organized into addi-
tions and removals. Block 118. Additions comprise elements
added to the file between versions and removals elements
removed from the file. Other organization of the changes can
be made. The modifications in the form of additions and
removals are then communicated to the client in the confir-
mation (together with the most current file version number).
Block 120.

Similar advantages and benefits may be achieved by
configuring the FMSR in this manner. Although in some
embodiments the FMSR may only identify a file and a
version of that file, in other embodiments further informa-
tion is provided. In some embodiments, for example, the
FMSR may include information regarding the modifications
that the client wishes to make to the file (one such example
is discussed below). The FMSR may be configured in a
markup language and can include distinct portions for
additions and removals that the client wishes to make to the
file.

Although FIG. 4 illustrates exchanges made between a
single client and server, it will be appreciated that this and
many other embodiments can be practiced in multiple user
applications with that of FIG. 1 being an example. Referring
now to that FIG. by way of example, each of the users A-E
may have outstanding FMSR’s pending with one or more of
the servers 12. User F may modify a shared file that is
subject to the pending FMSR. When the version number of
that shared file is updated, the version number specified in
the pending FMSR of each of users A-E no longer matches
the current version, and a confirmation is sent to each of the
clients A-E of the modifications made. In this manner, each
of the users A-E (as well as user F) may be practicing an
system embodiment as illustrated in FIG. 4.

It will also be understood that although FIG. 1 illustrates
five Users A-F, embodiments of the system may find great
utility when practiced during video conferences or other
collaboration events with larger numbers of users. Indeed,
those knowledgeable in the art will appreciate that another
advantage of embodiments of the present system is that they
scale well, and that the methods, systems, and program
products illustrated herein are not limited to any particular
number of users. Video conferences, for example, may be
conducted with 10, dozens, or even hundreds or more
participants using methods, systems and program products
of the system.

Further illustration of various aspects of embodiments
may be appreciated through consideration of a detailed
example of another particular embodiment. Although dif-
ferent embodiments of the system will prove valuable when
practiced in any of a number of different applications that
include a shared file on a network which users are updated
of when modified, many example embodiments are particu-
larly well suited for practice during real-time collaboration
events including video conferences generally configured as
shown in FIGS. 1-3 and as described in corresponding
discussion above.

In such a video conference, the Users A-F may be
collaboratively sharing a document on the network 10. The

20

40

45

65

16

shared file may be, for example, a spreadsheet, a drawing, a
word processor document, a video file, or any other data
containing file. The shared file may be formatted as HTML,
XML, JPEG, a WORD document, an EXCEL spreadsheet,
an MP3, or any other suitable format. Practice of methods,
systems and program products of the system can achieve
great advantage in these circumstances. For example,
through practice of an system embodiment multiple users
can modify the shared file, with other users notified of the
modifications only when those modifications occur and
receiving the modified material only (as opposed to the
entire file).

One such example application is the use of a shared
drawing board application wherein different users can col-
laboratively create and modify a drawing. FIG. 6 illustrates
a simple example. A circle 130 has its location specified by
x and y variables (for its center point), and its diameter by
a “size” variable. Assume that initially the client has the
variables set at x=3, y=5, and size equal to “medium.” These
variables can be manipulated by any user collaboratively
working on the drawing through a user interface operating
on the client computer (e.g., User A-F, FIG. 1). The variables
describing the drawing object are stored in a shared file such
as an XML document on or accessible through the network
10 (FIG. 1) called circle.xml located at: http://www.iocom-
.com/home/circle.xml.

Assume that all of the Users A-F (FIG. 1) desire to
collaboratively work on this shared circlexml file. The
flowchart of FIG. 7 and schematic of FIG. 8 are useful to
illustrate an example embodiment of the system useful to
accomplish this collaboration. When any of the Users A-F
(FIG. 1) initially join the collaboration event, they obtain a
copy of the shared circle.xml file as it currently exists on the
network 10. For the present example, assume that the initial
version of the shared circle.xml file has a version number of
“C,” and that as the collaboration event attendees (Users
A-F, FIG. 1) initially join the collaboration session they copy
this file to their local computers 34 (FIG. 2). Alternatively,
the users may have an existing stored copy of the shared file
version C.

Referring once again to FIG. 7, assume further that one of
the Users A-F desires to modify the drawing. Block 150. For
example, the user may desire to shift the circle’s position
along the x axis and to make the circle smaller. Through use
of a user interface operating at a client computer 34 (FIG. 2)
and its data entry device (such as a mouse or keyboard), the
user can click and drag the circle as desired to cause it to
change position and size on the graphical user interface
appearing on-screen and in the locally stored file. In the
current example, assume that these movements cause the x
value for the circle to be changed from 3 to 5 (representing
a shift along the x axis of 2 units) and its size value to change
from “medium” to “small.”

The client computer then identifies only the modifications
made to the locally stored file. Block 152. In the current
example, the modifications include only the “x” and “size”
values. These have changed, but the “y” value remains
unchanged. The user then communicates a FMSR to the
server 12. Block 154. The FMSR includes the file identifier
(http://www.iocom.com/home/circle.xml), a version number
corresponding to the most recent version of the file that the
client has (“C”), and modifications that the client wishes to
make to the file. In this example the file identifier includes
not only a file name, but also information on the location of
the file—where it may be found on the network 10. This is
accomplished by using a URL.

US 9,436,700 B2

17

In the example embodiment of FIGS. 7-8, only the
modifications that the client (User A-F) desires to make to
the file are communicated in the FMSR. This provides
savings on bandwidth and other network resources by avoid-
ing sending the entire file from the client. Additionally, the
modifications are organized into additions and removals for
placement into the FMSR. The example FMSR accordingly
is generally includes information as follows:

FMSR
Variable:
D http://www.iocom.com/home/circle.xml
Version C
Addition X =5, size = small
Removal

As discussed above, it has been discovered that benefits
and advantages are achieved by configuring the FMSR as a
markup language document. XML is one example. These
formats allow for additional functionality and properties of
data to be conveniently communicated, and also provide for
relatively seamless, conversion free transfer between a
markup language shared file.

When the server receives this FMSR, it uses the file
identifier (http://www.iocom.com/home/circle.xml) to iden-
tify the most current version of the file. Block 154. This step
may include retrieving the file, or may include referencing
a lookup table or other memory where the most current
version number of this file is stored. The file may be located
on a memory within the server 12, remote from the server 12
on another computer or storage device within the network
10, located on another network (such as the internet) acces-
sible from the network 10, or may be otherwise maintained.
The current version number of the file may be stored in the
file, may be in the header portion of the file, may be located
in another location in memory but associated with the file
(such as in a lookup table), or may otherwise be maintained.

In the system embodiment of FIG. 7, the server next
determines if the FMSR includes modifications to be made
to the file. Block 156. If there are no modifications to be
made, the server proceeds to dashed line box 105 of FIG. 4.
Referring now to that FIG. 4, the server 12 will perform a
series of looped steps as described above with respect to
FIG. 4, blocks 106-114. Through these steps, the server 12
will continue to check the file until a mis-match is identified
between the most current file version number and the
version number from the FMSR. When such as mis-match is
identified the server will send a confirmation to the client of
a modification, together with information describing the
modification. In this manner, the server will only report
modifications to the client “when” they occur, without the
requirement of the client sending repeated requests for
information on an update. Referring again to FIG. 7, because
the FMSR in the present drawing board example includes
modifications to be made to the file, a YES response results
at block 156. The server 12 proceeds to perform a number
of operations as summarized in block 158 of FIG. 7 (with no
sequence intended by the order of presentation within block
158). In some embodiments, these steps may be carried out
substantially simultaneously, or within a single process.
Other embodiments may include staggering execution of
these steps. In some applications, performance simultane-
ously or in a single process has been discovered to reduce
the likelihood of interference or error resulting from receipt
of an FMSR from another client while this step(s) is being
performed.

10

15

20

25

30

35

40

45

50

55

60

65

18

The operations of block 158 include retrieving the most
current version of the file. With reference now made to the
schematic of FIG. 8 in addition to that of FIG. 7, assume that
the most current version of the file when the FMSR is
received is version D (indicating that the file has been
updated since the client last received an update). Referring
again to FIG. 7, block 158, the server modifies the most
current version of the file (version D) to reflect the modifi-
cations desired by the client and described in the additions
and removals of the FMSR and assigns a new version
number (version E) to this modified file. The current file
(version D) is retained for future comparisons. Block 158.
This is useful, for example, if a future FMSR includes
version number D and it is necessary to determine what has
changed between some subsequent version (such as version
E) and D.

In some embodiments, the version number for the newly
modified file (version E) may be assigned at a different step
of the method than as illustrated in FIG. 7. For example, in
some embodiments it may be most efficient to assign the
new version number as a header stamp when the correspond-
ing new file or modifications thereto are communicated.

The server 12 also compares the version number of the
current file when the FMSR was received (version D) to the
version number identified in the FMSR (version C). Block
160. If the version numbers match, a “no” results from block
160 indicating that the client is aware of the most recent
version of the shared file and it is not necessary to notify the
client of any modifications. The embodiment of FIG. 7
proceeds to the block 162 where the version number from
the FMSR (C) is replaced with the new most current version
number (E), and then proceeds to the dashed line box 105 of
FIG. 4. Replacing the version number is useful since the
client is already aware of the contents of version E.

As described above with reference to the steps contained
in dashed line box 105, the server will then continually
compare the most recent version that the client is aware of
(version E) to the most current version of the shared file on
the network, and will notify the client of modifications when
they occur. Although not illustrated in FIG. 7, some embodi-
ments may also communicate to the client the new version
number (E) and/or confirm that its desired modifications to
the shared file have been made.

If a ““yes” decision results from block 160, this indicates
that the current version of the shared file includes modifi-
cations that the client is not aware of. The embodiment then
compares the version identified in the FMSR to the most
current version at the time the FMSR was received (version
D) to identify differences between the two files. Block 164.
The differences between the two files are organized into
additions and removals for communication to the client in
the confirmation. Block 166.

Some example embodiments of the invention store pre-
vious versions of the shared file in a network accessible
memory so that they can be compared to the current version
to identify differences between them. It may be useful, for
example to store the previous 100 versions, or the previous
5 versions, or some other number of previous versions. The
corresponding version number for each stored version is also
retained. Thus, for example, modifications made since a
sequential version 12 can be determined even if the current
version number is a sequential 23 by comparing a stored
version 12 to current version 23 (even though 11 sequential
versions have come between).

These steps may be further illustrated through consider-
ation of the schematic of FIG. 8. The new file version E
includes the values of version D as modified by the additions

US 9,436,700 B2

19

and removals of the FMSR. The modifications between files
D and C that will be communicated to the client include
differences between those files, and do not include new
values from file E that were arrived at through the adoption
of modifications specified by the client and contained in the
FMSR (e.g., no modification to x value is communicated
since the FMSR modified x). Accordingly, the confirmation
includes the following information:

Confirmation

Variable:

D http://www.iocom.com/home/circle.xml
Version E

Addition Y=6

Removal

Once the client computer receives this, it will modify its
locally stored version of the file so that it reflects the most
current version stored on the network (i.e., is consistent with
version E).

It will be appreciated that the FMSR and confirmations
may take any of many different suitable forms, and that
those illustrated herein above are examples only. As dis-
cussed, it has been discovered that including only modifi-
cation data in one or both of the FMSR and the confirmation
offers advantages and benefits over the prior art. It has
additionally been discovered that configuring these files as
markup text documents, with an example being XML docu-
ments, provides unexpected benefits and advantages in
computer and network resource consumption.

Still further, segmenting the modification data into addi-
tions and removals has been discovered to provide benefits
and advantages not previously achieved in many applica-
tions. This is an optional step of some embodiments, how-
ever, which may not be performed in some embodiments.
Other categories can also be defined. Which data to define as
“additions” and “removals” within the FMSR and the con-
firmation can depend to an extent on programming seman-
tics. By way of example, in the present drawing board
example the FMSR included a new x value in the addition
portion. The previous x value could have been included in
the removal portion to indicate that the previous x value
should be “removed” and the new x value “added.”

Alternatively, only an addition can be made (as was
illustrated above) with the implication that a new x value
inherently requires that the old x value will be changed
(removed). With reference to the drawing board circle
example shown in FIG. 5, another example of a “removal”
might include the user desiring to remove the circle alto-
gether—to clear the drawing board. The user might enter
some command through a user interface which would result
in the FMSR including the variable “circle” in the removal
section.

With reference to FIG. 1, it will be appreciated that
through practice of this example embodiment of the system
all of the plurality of client Users A-F can collaborate on the
single drawing board file maintained on the network 10,
efficiently communicate desired modifications to the net-
work, and efficiently receive updates on modifications that
others of the users have made. Through practice of the
embodiment of FIG. 7, updates are provided to users only
when a modification occurs, and only the modification is
communicated to users (as opposed to the entire file). As
discussed herein, this achieves significant advantages over
the prior art.

10

15

25

30

35

40

45

50

55

60

65

20

It will also be appreciated that embodiments of the present
system can be embodied in a multiplicity of different meth-
ods, systems and program products to achieve useful ben-
efits and advantages in a variety of different applications.
Many example applications include a single shared file on a
network is shared between multiple users whom each
modify the shared file, including many that are useful in real
time collaboration events such as video conferences.

Discussion of several representative of these multiple user
collaboration event embodiments is provided below. For the
sake of brevity, only brief description of each of several
representative embodiments is provided herein below. It will
be appreciated, however, that these example embodiments
can be practiced using the network configuration described
above and in FIGS. 1-3, and that these embodiments are
further described through the flowcharts and schematics of
FIGS. 4, 5, 7 and 8 and corresponding discussion above. It
will therefore be understood that the below summary
descriptions of some example embodiments are brief sum-
maries only of particular embodiments of the system as
described herein above with reference to FIGS. 1-5 and 6-7.
Finally, it will be understood that these examples are not
exhaustive of embodiments, and that many others are pos-
sible.

User Presence Embodiment

Collaboration event (such as a video conference) user
presence applications are one example embodiment. In a
video conference occurring using a system as generally
described by FIGS. 1-3 a user presence application is useful
so that each of the Users A-F have a list of others of the users
that are currently present or that are connected to the
network 10 and therefore available for participating in the
video conference. In systems, methods and program prod-
ucts of the prior art, this often required that a presence
engine on the network 10 to constantly poll each of the Users
A-F to confirm whether or not they were present. This
consumed considerable bandwidth over connections 14,
required significant computer resources on the network 10
and at the Users A-F, and otherwise required substantial
overhead.

Practice of some embodiments of the system significantly
reduce consumption of this bandwidth and other resources.
For example, the embodiments of FIG. 4, 5 or 7 may be
useful to practice a user presence application running on
each of the User A-F computers (FIG. 1) that achieves
significant advantages over the prior art. A commonly shared
user status file is located on the network 10 (or accessible
from the network 10) that includes a list of Users A-F that
are currently connected to the network and therefore acces-
sible for conferencing. Whenever a User A-F connects to the
network 10, it may send a FMSR to the network (e.g., block
150, FIG. 7) that includes an “addition” of its name to add
to the shared user status file. The file will be modified to
include that User name, and the version number of the user
status file changed (e.g., blocks 152-156, FIG. 7).

Referring to FIGS. 1 and 4 in combination to 7, other
Users A-F already connected to the network 10 may have
sent an FMSR without any addition data to the network 10
requesting to be notified when the user status list changed
(i.e., when a new user signed on and was available for
conferencing). When the user status file is updated to reflect
the addition of a new user name, the status file version
number will be changed (e.g., block 156, FIG. 7). This will
cause a yes result in block 106, FIG. 4, with respect to
FMSR’s issued by others of the users. Those others of the
Users A-F will then be communicated a confirmation includ-
ing the users status file “addition” identifying the new user

US 9,436,700 B2

21
that is connected to the network and available for confer-
encing (e.g., FIG. 4, dashed line box 105).

The shared user status file can also include other infor-
mation concerning the various users in addition to simply
noting their on-line presence. Information concerning their
hardware or software capabilities, security settings, and the
like may be provided in the FMSR, stored in the shared users
presence file, and communicated to other clients in confir-
mations.

22

add his name to the user list in the shared file) and therefore
cause the version number to change:

CANCEL http://one.acme.net:554/presence/users.xml HTTP/1.0
Authorization: Basic dHKJFvgjghjtYTkniOPhOgkNftdiWw=
CSeq: 2

4. The user communicates an FMSR containing a POST

. .- . 10 command specifying the modification to the shared file (i.e.
Still an additional example User Presence embodiment . peciiyms ! (e,
. . . add his name to the list of users present), the server makes
may be illustrated through consideration of example XML . . .
A the modification, changes the shared file version number to
formatted communications between a first computer (such as - . -
User A-F. FIG. 1) and d " b A 10 and then communicates this new version number 10 to
ser A-F, .1anda second computer (sqc as computer the user in a confirmation:
12) that occur through this example embodiment. 15
In this example, a first user (“Jon Swanson”) initially logs
into a conference server and communicates a request (using, POST http://one.acme.net:354/presence/users.xml HTTP/1.0
for example, a FMSR) for a copy of the list of users present Authorization: Basic dHKIFvgjghjtY JkniOPhOgkNftdiWw=
. CSeq: 3
in the conference. This may be maintained in a shared file on ETag: “0”
the network 10 (FIG. 1). Because Jon Swanson is the first 29 User-Agent: I0Com_ Client/2.0.3
user joining the conference, the list of users in the shared file Content-Length: 507
s . <?xml version=*1.0" encoding="utf-8”?>
is initially empty. Once the user receives the file copy, the <modify>
user then cancels his FMSR request because he is about to <add>
change that list (by adding his name to the user list), which <users>
will cause the shared file version number to change. After 25 . <user id="jswanson@acme.com” timeout="60"
. . . = >
adding his name to the shared file user list through a POST read="@acme.com
L ; <handle>Jon Swanson</handle>
command, a new FMSR request for. changes is communi- <status._code>Available</status_code>
cated. When a second user (Jon Smith) then logs in to the <status_ phrase></status_ phrase>
server, the version number of the shared file changes and the /<mallb0X read="jswanson@acme.com”></mailbox>
. . < >
first user is notified of the change. 30 .
The sequence of steps performed in this embodiment for <fadd>
the first user Jon Swanson is generally as follows, including </modify>
example XML formatted communications between the user ggTPg-o 100 Waiting...
. eq:
and the server: Date: Thu, 24 Apr 2008 15:00:50 GMT
l.. Imt.lally connect and GET the current shared document 35 Server: inSORS/2.0
(which is empty because the user if the first attendee)— HTTP/1.0 200 OK
current version number 9: CSeq: 3
Date: Thu, 24 Apr 2008 15:00:50 GMT
ETag: ©“10”
Server: inSORS/2.0
GET http://one.acme.net:554/presence/users.xml HTTP/1.0 40
Authorization: Basic dHKJFvgjghjtYTkniOPhOgkNftdiWw=
CSeq: 1 5. Using an FMSR, the user communicates a an FMSR
lient/. g
gﬁ;?f%ntz‘o{)oggmfc fent/2.0.3 with a POST command telling the server to notify it “when-
CSeq: 1 none-match” the current version number 10 (i.e., notify
Content-Length: 63 5 when the shared file version number changes, FIG. 4 block
Date: Thu, 24 Apr 2008 15:00:50 GMT 106):
ETag: “9”
Server: inSORS/2.0
<?xml version=*1.0" encoding="utf-8”?>
<users> POST http://one.acme.net:554/presence/users.xml HTTP/1.0
<Jusers> Authorization: Basic dHKJFvgjghjtYTkniOPhOgkNftdiWw=
50 CSeq: 4
ETag: ©“10”
2. Using an FMSR, use the XML command POST to USEI'AgeH“ IOCOF:C{{eHV2-0-3
inform the server that the user should be sent a confirmation When-None-Mateh: "10
when the user list version number changes (using so-called
“when none match” logic to compare shared file version 55 6. The user communicates a “keep-alive” (or refresh)
numbers—e.g., FIG. 4, block 106) to learn when a new user request identifying this POST (may be repeated about every
logs on: 10 seconds) to keep the FMSR request alive:
g P q
POST http://one.acme.net:554/presence/users.xml HTTP/1.0 60 POST http://one.acme.net:554/presence/users.xml HTTP/1.0
Authorization: Basic dHKJFvgjghjtYTkniOPhOgkNftdiWw= Authorization: Basic dHKJFvgjghjtYTkniOPhOgkNftdiWw=
CSeq: 2 CSeq: 4
ETag: “9” ETag: ©“10”
User-Agent: IOCom__Client/2.0.3 User-Agent: IOCom_ Client/2.0.3
‘When-None-Match: “9” ‘When-None-Match: “10”
65

3. The user then communicates a CANCEL for the FMSR
request since it is about to communicate a modification (to

7. The Server communicates a confirmation to the user
after Jon Smith logs and the version number of the shared

US 9,436,700 B2

23

file thereby changes indicating that the new version number
is 11, the “when-none-match” logic is subsequently satisfied
and the server therefore communicates a confirmation to the
user together with the modification made to the shared file
(Jon Smith added):

HTTP/1.0 200 OK
CSeq: 4
Content-Length: 305
Date: Thu, 24 Apr 2008 15:01:41 GMT
ETag: “11”
Server: inSORS/2.0
<?xml version="1.0" encoding="utf-8”?>
<modify>
<add>
<users>
<user id=“jsmith@acme.com” timeout="60">
<handle>Jon Smith</handle>
<status__code>Available</status__code>
<status_ phrase></status_ phrase>
<fuser>
<fusers>
<fadd>
</modify>

8. The user communicates a new FMSR with a POST
command including version 11 to wait for future modifica-
tions to the shared file:

POST http://one.acme.net:554/presence/users.xml HTTP/1.0
Authorization: Basic dHKJFvgjghjtYTkniOPhOgkNftdiWw=
CSeq: 5

ETag: “11”

User-Agent: IOCom__Client/2.0.3

‘When-None-Match: “11”

9. The user communicates a keep-alive or refresh identi-
fying the FMSR POST every 10 seconds to keep it alive:

POST http://one.acme.net:554/presence/users.xml HTTP/1.0
Authorization: Basic dHKJFvgjghjtYTkniOPhOgkNftdiWw=
CSeq: 5

ETag: “11”

User-Agent: IOCom__Client/2.0.3

‘When-None-Match: “11”

The XML formatted shared file on the network including
the current user list has the following general appearance
after both users have logged in:

<?xml version=*1.0" encoding="utf-8”?>
<users>
<user id="jswanson@acme.com” timeout="60" read="@acme.com”>
<handle>Jon Swanson</handle>
<status__code>Available</status_ code>
<status_ phrase></status_ phrase>
<mailbox read="jswanson@acme.com”></mailbox>
<fuser>
<user id="jsmith@acme.com” timeout="60" read="“@acme.com™>
<handle>Jon Smith</handle>
<status__code>Available</status_ code>
<status_ phrase></status_ phrase>
<mailbox read="jsmith@acme.com”></mailbox>
<fuser>
<fusers>

It is noted that the above presented User Presence
example makes use of a cancellation communicated from
the user prior to his communication of modification instruc-
tions. This can be useful to prevent the server from com-

10

15

20

25

30

40

45

50

55

60

65

24

municating modification data that the user is already aware
of (i.e., that he has joined the conference).
Chat Embodiment

Another example embodiment is an online “chat” appli-
cation in which multiple participants share text messages in
real-time. Referring to FIG. 1, a single shared file on the
network 10 might include a series of messages from different
of'the Users A-f, with each of the Users A-F able to post new
messages by modifying that shared file. Each time any of the
Users A-F adds a new message, others of the Users A-F need
to be notified of the addition.

In this example the shared file could be an XML docu-
ment containing “message” elements. When a user wants to
write a text message to the other users in the meeting, it
modifies the shared WL document by appending a new
“message” element containing the text to be shared in the
additions portion of an FMSR. It may also delete an old
“message” element if it wants to limit the size of the XML
document to, for example, the most recent 100 messages by
specifying the deletion in the Removals portion of the
FMSR.

Referring to FIGS. 1 and 4 in combination to 7, other
Users A-F already connected to the network 10 may have
sent an FMSR without any addition data to the network 10
requesting to be notified when the shared chat file changed
(i.e., when a new text message was added). When the chat
file is updated to reflect the addition of a new text message,
the shared text message file version number will be changed
(e.g., block 156, FIG. 7). This will cause a yes result in block
106, FIG. 4, with respect to FMSR’s issued by others of the
users A-F (FIG. 1). Those others of the Users A-F will then
be communicated a confirmation including the shared text
message file addition (i.e., the new text message) (e.g., FIG.
4, dashed line box 105).

Shared Document Application Embodiment

Additional multiple user collaboration embodiments of
the system include collaboration on a shared word processor,
spreadsheet, chart or other application document. The shared
word processor or spreadsheet document can be stored on
the network 10 (FIG. 1), and can be embodied in a markup
language file (such as in an XML document). Modifications
to the documents can be made by any of the Users A-F
through communication of an FMSR to a server 12. The
server 12 will modify the shared file and change the version
number corresponding to the file (e.g., FIG. 7, blocks
156-158). The server 12 (FIG. 1) will then send confirma-
tions to any of the other Users A-F that have pending,
outstanding FMSR’s with the server 12 notifying them of
the new file version number and of the modifications that
have been made to that new file (e.g., FIG. 4, dashed line box
105).

Shared Browser Embodiment

Another multiple user collaboration embodiment of the
system is a shared browser file that maintains a shared URL
address referring to a webpage or other location on the
internet. It has been discovered that in multi-user collabo-
ration events such as a videoconference it is often useful for
one user to share with other users a web address. Reference
may be made during a videoconference, for example, to a
particular webpage. Sharing the address of that webpage
with all other users can be useful so that the other users can
see the webpage. An example embodiment of the system is
useful to accomplish this.

In this embodiment, a shared browser file in maintained
on the network 10 (FIG. 1) that includes a URL address to
be accessed by all Users A-F. In some embodiments, the
shared file may have sections for each participant with each

US 9,436,700 B2

25

participant able to put in a web address. Other participants
can choose which particular user’s browser address to view.

Modifications to the shared browser document can be
made by any of the Users A-F through communication of an
FMSR to a server 12 (FIG. 1) that includes a new URL or
internet address to be shared with other Users. By way of
particular example, an XML format FMSR with a specified
web address is as follows:

<add>
<users>
<user id="achapwes@acme.com” timeout="300">
<handle>Aron Chapwes</handle>
<url>http://aron.chapwes.com</url>
<fuser>
<fusers>
</add>

This FMSR includes the modification to be made to the
shared browser file of specifying a new URL element
associated for the user name Aron Chapwes.

The server 12 will modify the shared browser file to
reflect this new internet address and change the version
number corresponding to the file (e.g., FIG. 7, blocks
156-158). The server 12 (FIG. 1) will then send confirma-
tions to any of the other Users A-F that have pending,
outstanding FMSR’s with the server 12 notifying them of
the new file version number and of the modification made to
that new shared file (e.g., FIG. 4, dashed line box 105) that
informs them what web address user Aron Chapwes is
viewing.

Shared Document List Embodiment

Another multiple user collaboration embodiment of the
system is a shared document list file that maintains a list of
documents (or files) that each User A-F (FIG. 1) makes
available for sharing with others of the Users A-F. It has
been discovered that in multi-user collaboration events it is
often useful for users to share with other users various
documents (or files). Users A-F participating in a videocon-
ference, for example, may be engineers collaborating on a
new machine design. Each may have blueprints or schemat-
ics to share with other participants. These documents may be
shared by placing them in a “common” file folder on a local
computer for access by others. So that all users have a
current list of what is in all other users common file folder,
a shared document list file is maintained on the network 10.
Modifications to the shared document list file can be made
by any of the Users A-F through communication of an
FMSR to a server 12 (FIG. 1) that includes a new document
or file name to be shared with other Users. The server 12 will
modify the shared document list file to reflect the new
document or file names available for sharing with others
(e.g., FIG. 7, blocks 156-158). The server 12 (FIG. 1) will
then send confirmations to any of the other Users A-F that
have pending, outstanding FMSR’s with the server 12
notifying them of the new shared document file version
number and of the modification made to that new shared file
(e.g., FIG. 4, dashed line box 105).

Shared Moderator Embodiment

Another multiple user collaboration embodiment of the
system is a shared moderator file that maintains current
information provided by a meeting moderator. It has been
discovered that in multi-user collaboration events, and par-
ticularly large scale meetings with many users, it is often
useful for one of the users to act as a moderator of the event.
The moderator may provide some degree of organization to
the meeting by directing the discussion, choosing topics,

10

15

20

25

30

35

40

45

50

55

60

65

26

changing the subject, asking questions, choosing speakers or
exhibits, setting time limits, and the like. As such, it can be
useful for the moderator to send messages, data, or other
information to all other users.

It has been discovered that a convenient and efficient
manner to accomplish this is through use of a shared
moderator file on the network 10 (FIG. 1) that all users
share. The moderator (who may be, for example, any of the
Users A-F (FIG. 1) may post messages for users in the
shared file. He may, for example, place text, information or
other data to be shared with all other users in the shared
moderator file, and the other users then access it.

Modifications to the shared moderator file can be made by
the moderator through communication of an FMSR to a
server 12 (FIG. 1) that includes new data for the shared
moderator file (e.g., a text message that the meeting has been
extended by 30 minutes to discuss one additional topic). The
server 12 will modify the shared moderator file to reflect the
new text message for sharing with others (e.g., FIG. 7,
blocks 156-158). The server 12 (FIG. 1) will then send
confirmations to any of the other Users A-F that have
pending, outstanding FMSR’s notifying them of the new
text message in the shared moderator file (e.g., FIG. 4,
dashed line box 105). In some shared moderator file and
other embodiments of the system, the server 12 (FIG. 1) may
allow modification of the shared moderator file only by a
designated one or more of the Users A-F (i.e., the designated
moderator).

Shared Hardware Embodiment

Another multiple user collaboration embodiment of the
system is a shared hardware file that maintains current
information on hardware such as cameras 18 and micro-
phones 20 at each of User A-F (FIGS. 1-3) that are available
for remote control. It has been discovered that in multi-user
collaboration events it can be desirable to offer remote
control of some hardware at one or more Users A-F. By way
of example, in a large collaboration session where each of
Users A-F have multiple cameras 18 at their facility, one or
more of the Users A-F may allow for one or more cameras
18 at each of their locations to be remotely controlled by one
or more of the other Users A-F. Thus User F may remotely
direct one of the cameras 18 at User A to pan, tilt, change
focus, or the like.

It has been discovered that a convenient and efficient
manner to accomplish this is through use of a shared
hardware file on the network 10 (FIG. 1) that includes a list
of hardware that is available for remote control. Each
camera 18 and microphone 20 may have a unique address.
Each User A-F may specity in an FMSR a list of hardware
such as cameras and microphones at their location that they
are offering for remote control. Other information may be
provided, including the unique address for each piece of
hardware, and various properties for each piece or hardware
(e.g., information useful for remote control).

The server 12 will modify the shared hardware file to
reflect the hardware identified in an FMSR as being avail-
able for remote control and change the version number of the
shared hardware file (e.g., FIG. 7, blocks 156-158). The
server 12 (FIG. 1) will then send confirmations to any of the
other Users A-F that have pending, outstanding FMSR’s
notifying them of the new file version number and of the
modification made to that shared hardware file including
newly identified (or deleted) hardware that is available for
remote control by others (e.g., FIG. 4, dashed line box 105).

Some shared hardware control file embodiments of the
system also allow for other users to specify the remote
control actions they desire. This can be accomplished by

US 9,436,700 B2

27

other Users sending an FMSR to the shared hardware file
with instructions for particular pieces of hardware. For
example, User F could communicate an FMSR with direc-
tions to make User A’s camera 1 to pan 30° to the right. If
User A had an outstanding FMSR with the server 12, a
confirmation would then be sent to User A with this modi-
fication, and upon receipt at User A camera 1 would be
directed to pan 30°.

By way of further illustration of one particular such
embodiment, below is example XML format communica-
tions between a client and server for sharing and remotely
controlling a camera at one user location. In the below
FMSR, user “achapwes” communicates information about
himself and his cameras that are available for remote con-
trol.

<cam>
<users>
<user id="achapwes@acme.com” timeout="300">

<name>Aron Chapwes</name>

<cameras>
<camera id="0">

<name>Desktop Camera</name>

</camera>

</cameras>
<mailbox read="achapwes@acme.com” />
<fuser>
<fusers>
</cam>

Then, when another user “jswan” wants to control this
camera at user achapwes, they can do so by writing a
“message” object to user achapwes’s “mailbox” as provided
below. Note that this exchange includes a security password

“passphrase” for allowing access.

<add>
<cam>
<users>
<user id=“achapwes@acme.com”>
<mailbox>
<message id="<guid>" timeout="300">
<from>jswan@acme.com</from>
<subject>Zoom-In</subject>
<passphrase>secret</passphrase>
<camera__id>0</camera>
</message>
</mailbox>
<fuser>
<fusers>
<fcam>
<fadd>

User achapwes then acknowledges receipt of the message by
deleting it from his shared file:

<remove>
<cam>
<users>
<user id="achapwes@acme.com”>
<mailbox>
<message id="<guid>" />
</message>
</mailbox>
<fuser>
<fusers>
<fcam>
</remove>

15

20

25

30

35

40

45

50

55

60

65

28

As will be appreciated through consideration of this
embodiment of the system, the present system is not limited
to providing updates and modifications directed by individu-
als. FMSR’s and confirmations may communicated to and
from directly with hardware and/or software devices.
Accordingly, as used herein the term “user” will be broadly
interpreted. By way of example, it will be appreciated that
embodiments of the system may be practiced by process
based hardware devices such as cameras that communicate
FMSR’s and receive confirmations directly.

Shared Mailbox Embodiment

Another embodiment of the system is a shared mailbox
file that maintains shared information on any number or
aspects of each user. The shared mailbox file may be viewed
as a “catchall” or “utility” file used to store multiple different
elements of information concerning various of the users,
their hardware or software settings, and the like. A single
shared mailbox file may have sections for each user and
contain information about different aspects of each user in
their sections. By way of example, the shared mailbox file
stored on the network 10 might combine the functionality of
the user presence embodiment, the shared hardware embodi-
ment, the shared document embodiment, and the chat
embodiment.

In such an embodiment, the shared mailbox file includes
sections for each of Users A-F, with sections added or
removed for particular users based on FMSR’s they com-
municate to the server. Accordingly, the presence or absence
of a user in the shared file indicates whether they are
attending the meeting and thereby provides the functionality
of the user presence embodiment.

In this example, each user section of the shared mailbox
file also includes a list of documents or files specified by the
particular user for sharing with others, a list of hardware
specified by the particular user for remotely controlling by
other users, and any text messages that the user wishes to
add to a shared chat board. Whenever any one user modifies
the shared mailbox file (e.g., by adding a new text message
through communicating an FMSR), the server communi-
cates a confirmation to all other users notifying them of the
modification and including the change.

Consideration of the various above described example
embodiments highlights still another advantage of the sys-
tem related to ease implementation and support of new
applications. In many prior art systems, methods and pro-
gram products, each of the above applications (if they
existed) and other applications that required multi-user
sharing of single file were configured as stand alone appli-
cations. Each was required to be implemented and installed
on both the client and server side. Thus, for example, if a
video conference system of the prior art desired to imple-
ment a user presence engine, a chat application, and a
hardware remote control application (if such a system
existed), each may be required to be implemented separately
as stand-alone applications. Each might require its own
client and server side software, and each consumed band-
width, memory and other computing resources.

Embodiments of the present system achieve significant
advantages and benefits over this prior art by providing a
single ubiquitous platform for supporting any number of
shared file applications. Put another way, embodiments of
the system may be viewed as a shared file application
“engine” that can support any desired number of shared file
applications. With reference to the flowcharts of FIGS. 4, 5,
7 and 8, the FMSR, shared file, and confirmations can
contain information directed to any desired shared file
application. The FMSR, shared file, confirmation, and

US 9,436,700 B2

29

embodiments are not application specific—they can be used
to support any desired shared file application, and further
can support multiple applications simultaneously. All that
necessarily changes between the different applications is
particular information placed in the FMSR and confirmation
(e.g., file identifiers, variable names in the FMSR and
confirmation, etc.) and perhaps a different user interface at
the User A-F.

Accordingly, still another embodiment of the system is a
shared file application platform or engine that supports a
plurality of different shared file applications. Reference to
the schematic of FIG. 9 is useful to further illustrate this
embodiment of the system. In FIG. 9, a client computer
(which may represent, for example, any of the Users A-F of
FIG. 1-3) has graphic user interfaces running for multiple
different shared file applications. Likewise, the network 10
has shared files for each of these various applications.
Modifications to any of these files may be made through
practice of methods, systems or program products according
to the flowcharts of FIGS. 4, 5, 7 and 8. Confirmations and
information on the modifications made are communicated to
the users in the manner described in those FIGS.

A valuable advantage of this and other embodiments of
the system is that the process operating at the client and
server computer is a single engine that achieves the shared
file updates and confirmations. As the number of applica-
tions being supported grows, tremendous savings in band-
width, memory, processor, and other computational
resources are gained. Further, significant gains in stability
are likewise achieved since only a single engine is operating.

Another significant advantage over the prior art is ease of
implementation of new shared file applications. Referring
again to the schematic of FIG. 9, should a new shared file be
desired to be launched, all that is required is that a new GUI
be installed at the client and new shared file stored on the
network 10. Changes or additions need not be made, how-
ever, to the underlying engine that drives file modifications
and confirmations (as described, for example, by FIGS. 4, 5,
7, and 8) since this engine is not application specific. No
additional software is required on the server side (other than
storing a new shared file).

Referring to FIG. 9, it will be noted that in some embodi-
ments of the system the various GUI’s could be combined
into a single GUI, and further that the various shared files on
the network 10 could be combined into a single file having
multiple portions. This could be packaged, for example, as
a single shared “mailbox” file as described herein above.

Embodiments described above have generally included a
file being shared during a collaboration event such as a video
conference. Although various embodiments of the system
have proven to be of particular utility in such applications,
these are but one set of embodiments. Other embodiments
will prove useful in other applications unrelated to video
conferences or collaboration events.

For example, other embodiments of the system will be of
value in applications that include, by way of example (and
not by way of limitation) network communications of gam-
ing, financial markets, maps, weather, media, and many
others. Many of these applications generally have in com-
mon that they include one or more of the following factors:
a relatively large, shared file that changes; the size of the
changes are small relative to the size of the file; multiple
users are notified of the changes; and such notifications
should occur promptly after they occur (e.g., substantially
real time).

One such example is reflected in the schematic of FIG. 10,
where a User A and her computer are interconnected to the

10

15

20

25

30

35

40

45

50

55

60

65

30

first data network 10, and Users G and H and their computers
are interconnected to a second data network 170. User A
transmits data to, and receives data from, the server 12 via
the first data network 10. Thus, the Users G and H transmit
data to, and receive data from, the server 12 via the second
data network 170. The server computer 12 facilitates com-
munication among Users A, G and H. While the server
computer 12 is shown as part of the data network 10 the
server may, of course, alternatively also be a part of the
distinct data network 170.

In the example embodiment shown in FIG. 10, the data
network is the Internet, and the second data network is a fast
version of the Internet, such as the Grid being developed at
CERN, as discussed previously. In alternative embodiments,
of course, each of the different data networks 10, 170 could
be a LAN, WAN, or wireless network.

The use of the methods, program products and devices of
the present invention are particularly suited to such an
environment, where one data network is substantially faster
than the other. Prior methods of updating a file include
transmitting a new version of substantially the entire file
when the file has been modified. Such an approach may be
acceptable when all client computers download the file at
approximately the same time. When, however, User G
modifies the file and User H downloads the new version of
the file substantially earlier than User A (because, for
example, the data network 170 is faster than the data
network 10 and the file is relatively large), communications
between User A and Users G and H may be compromised.
With the benefit of embodiments of the present system,
however, only the file modifications need be communicated
to the Users. Thus, while the modifications make take longer
for User A to download than User H, both Users A and H
view the modified document at closer to the same time
because only the file modification has been downloaded
rather than the entire file. Also, embodiments of the present
methods allow for updates to be communicated only when
a modification occurs.

As shown in the example embodiment of FIG. 11, the
server computer 12 is also a client computer (e.g., FIG. 1
User A-F) and, like the other client computers, may receive
inputs for modification of a file. Also, as shown in the
example embodiment of FIG. 11, the client computers may
be wireless devices.

The server computer 12 maintains a master file and a
master file identifier corresponding to the master file. How-
ever, the server computer 12 may physically maintain the
master file either within the server computer 12 or it may
maintain the master file on a separate memory storage
device, including, for example, one of the other client
computers or a network accessible location.

In the example embodiment of FIG. 12, the server com-
puter receives Inputs A, B, C, and D from a variety of
sources, each of which includes a client computer. The
server computer may also communicate with other client
computers via a wired network, a wireless network, or both.

In one example embodiment, Inputs A-D are computer-
ized controllers for machines within a factory, and the server
computer maintains a master file corresponding to the con-
dition of the various machines within the factory. The file is
updated in a shared file, which can be viewed remotely from
the machines via, for example, a personal computer or
wireless device.

Embodiments of the invention are not limited to tradi-
tional stand-alone computers, communication devices and
the like communicating with one another. In some embodi-
ments of the invention, the various users and “computers”

US 9,436,700 B2

31

may be components of a single larger system. For example,
another embodiment is reflected in FIG. 12 wherein the
Inputs A-D are local area networks in a single system. They
may be, for example, local area networks on a vehicle such
as an automobile, semi-tractor and trailer, airplane, earth
mover, crane, or the like. Such vehicles typically have a
variety of different local area networks on it devoted to, for
example, a braking system, a fuel system, engine operation,
electrical power, etc. The LANs on the vehicle can all
communicate to a computer server 212.

A master file corresponding to the conditions of various
vehicle components is periodically updated with a file
modification to reflect the current conditions of the various
vehicle components. The master file setting forth the status
of'the various components on the vehicle may than be shared
with other computers that are remote from the vehicle,
including for example a mobile device 214. One or more of
the inputs A-D and the mobile device may communicate
FMSR’s to the server 212 requesting to be updated when the
master file changes, with the result that a confirmation will
be sent to it when its version number changes.

In the example embodiment of FIG. 13, the client com-
puters include location monitors associated with members of
a transport fleet, where the fleet may include, for example,
trucks, automobiles, planes, and ships moving about in
different and distant geographic locations across the United
States and elsewhere. The file being shared is stored on
computer 312 reflects the current location and condition of
each of the members of the transport fleet, and the updates
to the file include data pertaining to the location or condition
of such members of the transport fleet. Each member of the
group may obtain current location data using a satellite and
communicate the same to the computer 312.

Thus, for example, an on-board client computer may issue
a FMSR if, for example, the associated truck breaks en route
to its destination. Further, a remote user 316 could, by
reviewing the updated file, know the current position of all
members of the fleet. Or, one member of the group may
request an update of the master file regarding the time a
particular other member of the group reaches a particular
destination so that an interdependent shipment schedule can
be off-loaded. Methods, systems and program products of
the invention, including those illustrated by FIGS. 4, 5, 7 and
others will be useful to efficiently achieve these and other
results.

According to the example of FIG. 14, the shared file
includes a listing of the status or location of units of
inventory for a business, including inventory found at a
factory F, being transported via ship or truck and stored
within a warehouse WH. Master updates of the shared file
reflect data on the current location of all inventory. A remote
user RU1 or RU2 sharing the document would be able to
identify the location of all inventory and coordinate a supply
chain in an efficient manner.

In the example of embodiment of FIG. 15, the shared file
pertains to weather conditions, and the master update
includes data pertaining to changed weather conditions. The
document being shared by the system is reflected in FIG. 15,
where real time updates reflect the current locations of high
fronts and storms and their direction of movement, atmo-
spheric pressure, wind speed and direction, as well as
current estimates of anticipated temperatures.

In another example embodiment, a file may reflect the
location of objects. In the example embodiment of FIG. 16,
the file pertains to a map with the location of streets and
points of interest in a particular area. The updates include,
for example, data on current traffic conditions. The file

10

25

40

45

32

reflected in FIG. 16 is a map with bars and lines superim-
posed on streets to reflect various levels of traffic flow.

In the example embodiment shown in FIG. 17, the file
may also contain a video or animated image, where updates
reflect changes to a relatively small portion of the image.
Thus, in the example shown in FIG. 17, an animated figure
such as a cartoon character is shown. Portions of the
character such as the hair, hands, and torso may move and
change position very little from frame to frame during a
particular sequence. Other portions, with an example being
the face and particularly mouth, may change position and
shape significantly during this same sequence. In this con-
text, the updates include data pertaining to the real-time
position of the lips and face.

In an example of a financial market application, a user
may have a set of stocks or commodities for which she
desires real-time updates. The universe of stocks that the
user has in interest in may be relatively large. In this case,
the file consists in a listing of such stocks, together with
relevant information regarding the stock, such as, for
example, its price, trading volume during a preceding time
period, beta, first derivative price slope, etc. Through prac-
tice of a system such as that illustrated in FIG. 4, 5 or 7-9,
that user can be notified only when one of the stocks or
commodities and/or one of the properties of the selected
stock in her set of interest changes, and further he may be
provided with only the changed price or other property of the
one stock or commodity has changed. As in several, but
certainly not all, other examples employing the system, the
entire file typically includes at least ten times as much data
as the file modification. In some examples, the entire file
may include at least 100 times the data as is contained in the
modification.

Thus, in example shown in FIG. 18, financial information
properties are disclosed for a variety of companies of
interest to the user. In the specific embodiment shown in
FIG. 18, the file includes data pertaining to the price of
particular stocks, and the master update includes data on
recent price changes.

In the example embodiment reflected in FIG. 19, the file
includes a variety of news reports as might be found in an
electric newspaper. The updates include data representing
current news stories which can be added to, or replace,
existing news stories. Thus, for the example of FIG. 19, the
file includes 50 news stories. When a newsworthy event
occurs, News Report #1 may be deleted and replaced with
another News Report.

In the example embodiment reflected in FIG. 20, the file
may be a personnel data base for employees of a business.
Thus, in the example of FIG. 20, the file includes employee
names and identification numbers, and the more frequent
updates pertain to the employees’ current level of overtime.
A remote user viewing the file of FIG. 20, however, may
prefer to have the data base sorted in a different manner, such
as by the current location of the employees, rather than by
an alphabetical listing of the employees’ names. The
example file of FIG. 21 reflects the same essential document
of FIG. 21, but the data has been reconfigured by the specific
client computer of the user to reflect the user’s viewing
preference. The adjustment of the data base shown in FIG.
21 may be communicated to the server computer 12 as a new
version of the file or, alternatively, may simply be shown by
the remote user’s client computer, without the revised file
being shared with other client computers.

Generally, many of the present methods, systems and
program products relate to communicating file modification
between at least two computers over a data network. The

US 9,436,700 B2

33

system includes the steps of a first computer communicating
a file modification status request to a second computer, with
the status request including at least a file identifier and a file
version identifier. The second computer uses the file iden-
tifier from the status request to identify a current version
number of a corresponding shared file. The second computer
then compares the current file version number to the file
version identifier from the status request and communicates
a response to the first computer when the current version
number does not match the version identifier from the status
request.

Those knowledgeable in the art will appreciate the broad
scope of the present invention as claimed below and that the
representative collaboration event and video conference
examples discussed herein are illustrative only. It will fur-
ther be appreciated that many variations are possible within
the scope of the invention as claimed herein below. The
sequence of steps of the example embodiments illustrated
herein and in corresponding flowcharts, for example, could
easily be altered. Also, some steps may be omitted and
others substituted. Equivalents to the steps recited will be
apparent to those knowledgeable in the art. Variable, file,
and other element names have been used herein for conve-
nience only, and these names should not be interpreted in a
manner that unduly limits the invention.

What is claimed is:

1. A conferencing system comprising:

a data network having at least one network computer for
communicating real time conference data between a
plurality of user computers;

a plurality of user computers connected to the data
network, each of the plurality of user computers con-
figured to transmit streaming data to all others of the
user computers over the data network, and at least one
of'the user computers receiving the streaming data from
others of the plurality of user computers over the data
network;

a shared file stored on the data network, the shared file
having a current property;

wherein at least one of the user computers is configured
to communicate a shared file meodification status
request to the at least one network computer, the shared
file modification status request including at least a file
identifier identifying the shared file and a property; and,

wherein the at least one network computer is configured
to receive the shared file modification status request
from the at least one of the user computers and to
perform steps comprising:

identifying the at least one shared file;

identifying a current property of the at least one shared
file;

comparing the shared file current property to the property
from the shared file status request; and

communicating a response to the at least one user com-
puter that transmitted the shared file modification status
request when the file current property does not match
the property from the shared file modification status
request.

2. A conferencing system as defined by claim 1 wherein
the shared file modification status request is communicated
by only a first of the user computers to the network com-
puter, and wherein the network computer communicates the
response to only the first of the user computers and not to
any others of the plurality of user computers that did not
communicate the shared file modification status request to
the network computer.

5

20

35

40

50

55

60

65

34

3. A conferencing system as defined by claim 1 wherein
the property is a shared file version identifier, and wherein
the network computer is further configured to:

retrieve a previous version of the at least one shared file

that corresponds to the version identifier from the file
modification status request;

compare the at least one shared file previous version to the

current version of the at least one shared file and
organize modifications made to the shared file into
additions and removals; and,

communicate to the user computers modifications that

have been made to the at least one shared file current
version as compared to the at least one shared file
previous version, the modifications formatted in
markup text language.

4. A conferencing system as defined by claim 3 wherein
the network computer is configured to communicate to the
user computers only modifications that have been made to
the at least one shared file current version.

5. A conferencing system as defined by claim 1 wherein
the shared file includes a list of the plurality of user
computers, and when a new user computer joins the video
conference the new user computer communicates with the
network computer and the network computer responds by
modifying the shared file by adding the new user computer
to the list of user computers that are participating in the
conference, and wherein the shared file property changes
upon addition of the new user computer to the list of user
computers.

6. A conferencing system as defined by claim 5 wherein
after a first of the plurality of user computers communicates
a file modification status request to the network computer
and the network computer determines that the shared file
current property is the same as the file property from the
status request, the network computer will wait to commu-
nicate a response to the first user computer, will continue to
check the shared file current property until the shared file
current property changes whereby it no longer matches the
file property from the status request, and will only then
communicate the response to the first user computer.

7. A conferencing system as defined by claim 6 wherein
the shared file property changes when it is modified to add
the name of a second of the plurality of user computers to the
list of user computers that are present in the conference, and
wherein the network computer communicates the name of
the second of the plurality of user computers to the first user
computer after the shared file has been modified.

8. A conferencing system as defined by claim 1, wherein
each user computer is selected to be one or more of a desktop
computer, a laptop computer, a processor enabled phone, a
personal digital assistant, and a processor based gaming
device, and wherein each of the user computers is commu-
nicating streaming video and audio data to all others of the
plurality of user computers whereby each of the plurality of
user computers receives streaming audio and video data
from all others of the user computers.

9. A conferencing system as defined by claim 1 wherein
the at least one shared file comprises a shared mailbox file
having a portion for each of the plurality of user computers
wherein data pertaining to each of the plurality of user
computers may be stored in their corresponding portion of
the shared mailbox file.

10. A conferencing system as defined by claim 1 wherein
at least some of the plurality of user computers designate one
or more files as collaboration files for sharing with others of

US 9,436,700 B2

35

the plurality of user computers during the conference, and
wherein the at least one shared file includes a list of the
collaboration files.

11. A conferencing system as defined by claim 1 wherein
the shared file property is a shared file version number, and
wherein the version number changes every time the shared
file is modified.

12. A conferencing system as defined by claim 1 wherein
the at least one shared file comprises a shared data file
including data encoded in a markup language.

13. A conferencing system as defined by claim 1 wherein
the at least one shared file comprises a digital representation
of a shared drawing board.

14. A conferencing system as defined by claim 1 wherein
the at least one shared file comprises a chat log allowing
users to transmit message data between the plurality of user
computers.

15. A conferencing system as defined by claim 1 wherein
the at least one shared file comprises a text document
editable by the plurality of user computers.

16. A conferencing system as defined by claim 1 wherein
the at least one shared file comprises a browser file including
at least one URL address.

17. A conferencing system as defined by claim 1,

wherein one of the plurality of user computers is desig-

nated as a moderator,

wherein the at least one shared file comprises a moderator

file useful for allowing the designated moderator to
communicate data to others of the plurality of user
computers, and

wherein the moderator file is readable by all of the

plurality of user computers, and modifiable by only the
designated moderator.

18. A conferencing system as defined by claim 1 wherein
one or more of the plurality of user computers includes one
or more items of remotely controllable hardware, and
wherein the at least one shared file comprises a list of the

10

15

20

25

30

35

36

plurality of user computers and, for each user computer, a
list of the remotely controllable hardware associated there-
with.

19. A collaboration system having a shared file modifi-
cation engine useful to notify collaboration users connected
to a data network when a shared file is updated, the modi-
fication engine comprising:

a plurality of client computers that each communicate a
file modification status request including a file identi-
fier and a file property;

at least one server computer connected to the data net-
work and to the plurality of client computers;

at least one shared file containing data to be shared with
the plurality of client computers, each of the at least one
shared files being modifiable by any of the plurality of
users and having a file name and a current property
associated therewith;

the server computer performing steps of:

receiving the file modification status requests from the
plurality of client computers and using the file identifier
in the status request to identify the at least one shared
file;

comparing the current file property of the identified at
least one shared file to the file property from the status
request; and

communicating a confirmation in response to each file
modification status request when the current file prop-
erty does not match the file property from the status
request, the confirmation confirming that the shared file
has been modified and including modifications made to
the shared file.

20. A collaboration system as defined by claim 19, the
modification engine further comprising one or more other
client computers that do not communicate a file modification
status request to the server computer,

wherein the server computer does not communicate the
confirmation to the one or more other client computers
in the communicating.

#* #* #* #* #*

